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First told by Fibonacci himself, the story that often accompanies one’s

initial encounter with the sequence 1,1,2,3,5,8,... describes the size of a

population of rabbits. The original question concerns the number of pairs of

rabbits there are in a population; for simplicity we consider individual rabbits

rather than pairs. In general, a rabbit is born in one season, grows up in the

next, and in each successive season gives birth to one baby rabbit. Here, the

sequence {fn} that enumerates the number of births in each season is given

by fn+2 = fn+1 + fn for n ≥ 1, with f1 = f2 = 1, which coincides precisely

with the Fibonacci sequence. Also, recall that the asymptotic exponential

growth rate of the Fibonacci numbers equals the golden ratio, 1+
√

5
2

. Further

discussion of this golden ratio can be found in [1]. In addition, there is

a very large amount of literature on the Fibonacci sequence, including the

Fibonacci Quarterly, a journal entirely devoted to the Fibonacci sequence

and its extensions.
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In this article, we consider similar recurrences and examine their asymp-

totic properties. One way this has been previously studied is by defining a

new sequence, Gn+r = α1Gn+r−1+α2Gn+r−2+· · ·+αrGn for n ≥ 1, and giving

a set of initial conditions {G1, G2, ..., Gr}. Other modifications include a non-

deterministic version that allows for randomness in the values of the terms of

the sequence, while still having successive terms depend on the previous two:

one such recurrence is given by tn+2 = αn+2tn+1 + βn+2tn where {αn} and

{βn} are sequences of random variables distributed over some subset of the

real numbers. In the case when {αn} and {βn} are independent Rademachers

(symmetric Bernoullis), that is, each taking values ±1 with equal probabil-

ity, Divakar Viswanath showed that although the terms of {tn} are random,

asymptotically the sequence experiences exponential growth almost surely;

n
√
|tn| approaches a constant, 1.1319... as n →∞ [6]. Building from this re-

sult, Mark Embree and Lloyd Trefethen determined the asymptotic growth

rate when αn and βn take the form of other random variables [2]. In this

article, we determine the growth rates of other variations of the Fibonacci

sequence, specifically those we call the geometric and harmonic Fibonacci

sequences.
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The Geometric and Harmonic Fibonacci Sequences

There has been significant study of Fibonacci-like sequences that are linear,

that is, recurrence relations of the form given by {Gn} defined above. In

this article, though, we will consider two non-linear Fibonacci recurrences.

First, note that we can view the Fibonacci sequence as a recurrence in which

each term is twice the arithmetic mean of the two previous terms. In this

light, we introduce the geometric Fibonacci sequence {gn} and the harmonic

Fibonacci sequence {hn}, in which each successive term is twice the geometric

or harmonic mean, respectively, of the previous two terms in the sequence.

That is, we define

gn+2 = 2
√

gn+1gn for n ≥ 1, with g1 = g2 = 1,

and

hn+2 = 4
1

hn+1
+ 1

hn

for n ≥ 1, with h1 = h2 = 1.

We motivate the study of the geometric and harmonic sequences by a de-

sire to examine properties associated with the triumvirate of the arithmetic,

geometric, and harmonic means.
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Term # Fibonacci Geometric Fibonacci Harmonic Fibonacci

1 1 1 = 20 1

2 1 1 = 20 1

3 2 2 = 21 2

4 3 2.828. . . = 23/2 2.666. . . = 8
3

5 5 4.756. . . = 29/4 4.571. . . = 32
7

6 8 7.336. . . = 223/8 6.736. . . =128
19

7 13 11.814. . . = 257/16 10.893. . . = 512
47

8 21 18.619. . . = 2135/32 16.650. . . = 2048
123

Table 1: The first eight terms of each Fibonacci sequence.

Arithmetic-Geometric-Harmonic Mean Relations

The first historical reference to the arithmetic, geometric and harmonic

means is attributed to the school of Pythagoras, where it was applied to

both mathematics and music. Initially dubbed the subcontrary mean, the

harmonic mean acquired its current name because it relates to “the ‘geomet-

rical harmony’ of the cube, which has 12 edges, 8 vertices, and 6 faces, and

8 is the mean between 12 and 6 in the theory of harmonics” [4]. Today, the

harmonic mean has direct applications in such fields as physics, where it is
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used in circuits and in optics (through the well-known lens-makers’ formula).

We also know that the following hierarchy always holds: the arithmetic

mean of two numbers is always at least as great as their geometric mean,

which in turn is at least as great as their harmonic mean. That is, given two

positive numbers a and b, a+b
2
≥
√

ab ≥ 2
1
a
+ 1

b

.

As a result of the arithmetic-geometric-harmonic mean inequalities, the

terms of the corresponding sequences we defined satisfy the inequality fn ≥

gn ≥ hn for all n. Next, we will see that the asymptotic growth rates of

the Fibonacci sequence, along with those of our geometric and harmonic

variations of the sequence, exist and also satisfy this inequality.

Calculating the Growth Rates for the Geometric and

Harmonic Fibonacci Sequences

In order to solve the difference equations for {gn} and {hn}, we will proceed in

the same manner as solving a non-homogeneous differential equation. First,

we will define a characteristic equation for the recurrence from which we can

obtain a homogeneous solution. Then, using the roots of the characteristic

equation, we will apply the method of undetermined coefficients to obtain

a particular solution (if necessary), which when combined with the homoge-
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neous solution and the initial conditions yields a solution to the difference

equation.

As a first example, we will derive the growth rate for the Fibonacci se-

quence in this manner. Our characteristic equation of the recursive sequence

{fn} defined by fn+2 = fn+1 +fn, is x2−x−1 = 0. This has solutions of x =

1±√5
2

. So, our homogeneous solution is fn = c1

(
1+
√

5
2

)n

+ c2

(
1−√5

2

)n

. Using

our two initial conditions of the Fibonacci sequence, namely f1 = 1, f2 = 1,

we see that c1 = 1√
5

and c2 = −1√
5
. This gives a general form (Binet’s formula)

for the nth Fibonacci number as fn = (1+
√

5)n−(1−√5)n

2n
√

5
. Thus, fn+1

fn
→ 1+

√
5

2
as

n approaches infinity. We say that the Fibonacci sequence {fn} has asymp-

totic bound 1+
√

5
2

, the golden ratio.

Next, we consider our geometric Fibonacci sequence {gn} as defined above

and proceed to determine its growth rate. (Note, though, it is not entirely

clear that an asymptotic growth rate exists by inspection.) A naive way to

guess what this rate is results from the following steps. If we assume that

this asymptotic growth rate exists, we can determine the limit of the ratio of

successive terms in the geometric mean recurrence directly from the recur-

rence relations. Let Rg be the asymptotic growth rate, i.e. Rg=limn→∞
gn+1

gn
.

Next, we solve for Rg:
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gn+2 = 2
√

gn+1gn

⇒ (gn+2)
2 = 4gn+1gn

⇒ limn→∞
gn+2

2

gn+1
2 = 4 limn→∞

gn

gn+1

⇒ Rg
2 = 4 1

Rg

⇒ Rg = 41/3

From this calculation emerges the surprising result that the asymptotic growth

rate of our geometric Fibonacci sequence is likely to be the cube root of four.

To obtain this result in a more rigorous manner, we instead solve for a

closed-form expression; from this expression, the growth rate is shown to

exist and is indeed equal to 41/3. The most common method for solving this

form of recursive relation is by using generating functions; the asymptotic

growth rate of the regular Fibonacci sequence can be found in this way.

Here we use a different technique–the one described above–that, in this case,

simplifies calculations. Recall that we have the following relation for our

geometric Fibonacci sequence: gn+2 = 2
√

gn+1gn. Squaring both sides, we

obtain (gn+2)
2 = 4gn+1gn. By making the substitution

bn = log(gn),

we obtain a nonhomogeneous linear recurrence, 2bn+2 = log 4 + bn+1 + bn,

whose solution is computed here, using a method which is analogous to that of
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solving a similar differential equation (such as f(x) = 17+f ′(x)+f ′′(x)). To

begin, we identify the characteristic polynomial as 2x2−x−1 = (2x+1)(x−1),

which has roots x = −1
2

and x = 1. Thus, the homogeneous solution is bn =

c1(−1
2
)n + c2(1)n. To obtain the particular solution, we try bn = An log(4).

If we substitute this into 2bn+2 = log(4) + bn+1 + bn we obtain A = 1/3.

Thus, bn = n
3

log(4) + c1(−1
2
)n + c2(1)n. By substituting b1 = b2 = 0 as

initial conditions, we can solve for c1 and c2.

0 = 1
3
log(4) + c1(−1

2
) + c2

0 = 2
3
log(4) + c1(

1
4
) + c2

Solving for c1 and c2 yields c1 = −4
9
log(4) and c2 = −5

9
log(4). So, the

solution to our recurrence relation is

bn = log(4)(n
3
− 4

9
(−1

2
)n − 5

9
).

Thus, for n ≥ 1, we have the following closed-form expression for our geo-

metric Fibonacci sequence:

gn = exp(bn) =2( 2n
3
− 8

9
(− 1

2
)n− 10

9
).

As predicted by the simple calculation performed above, the asymptotic

growth rate is indeed the cube root of four: Rgr = limn→∞(gn+1/gn) = 41/3 =
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1.5874 . . .. Note that this rate of growth is close to that of the arithmetic

(that is, the usual) Fibonacci sequence which we noted above as being the

golden ratio, 1.6180..., but is less than the golden ratio. Of course, however,

just as we know that, in the long-term, slight differences in interest rates

result in large differences in bank account balances, for the same reason, the

small difference in the growth rate with time results in quite large differ-

ences between the terms of the regular Fibonacci sequence and those of our

geometric Fibonacci sequence.

Finally, we analyze our harmonic Fibonacci sequence {hn}, whose re-

currence relation we recall is given by hn+2 = 4
1

hn
+ 1

hn+1

. Again, it is not

intuitively clear what type of growth this sequence undergoes, but we find

that it too experiences exponential growth. By employing a heuristic pro-

cedure similar to derivation of the geometric Fibonacci sequence, here we

determine the limiting ratio Rh = limn→∞
hn+1

hn
. Rearranging the recurrence

relation yields hn+2hn+1 + hn+2hn = 4hnhn+1 so that hn+2hn+1

hn+1hn
+ hn+2

hn+1
= 4.

Thus, assuming that the limit Rh exists, we have R2
h + Rh = 4, and by the

quadratic formula, we obtain roots −1±√17
2

. Finally, our growth rate is known

to be positive, so Rh = −1+
√

17
2

=1.5615....

Another way we can prove this is by the method presented for the cal-
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culation of the growth rate of the geometric fibonacci sequence. We notice

from Table 1 that each of the terms of hn for n ≥ 3 is of the form 22n−5/jn,

where j3 = 1, j4 = 3, j5 = 7 and jn+2 = jn+1 + 4jn for n ≥ 5. We can

solve this recurrence relation by the methods described above, which gives

the following closed-form expression for n ≥ 3:

jn = 51+5
√

17
1088

(
1+
√

17
2

)n

+ 51−5
√

17
1088

(
1−√17

2

)n

.

When using the relation between hn and jn, namely that hn = 22n−5

jn
, we

obtain an explicit expression for hn. This gives us an asymptotic growth rate

of 4
(1+

√
17)/2

= −1+
√

17
2

, as desired.

Thus, we have constructed the arithmetic-geometric-harmonic inequality

for the growth rates:

1+
√

5
2

≥ 4
1
3 ≥ −1+

√
17

2
,

with corresponding decimal approximations:

1.6180 . . . ≥ 1.5874 . . . ≥ 1.5615 . . .,

where the three terms correspond to the asymptotic growth rates we deter-

mined for the arithmetic (i.e. the usual), geometric, and harmonic Fibonacci

sequences.
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Appendix: Integer-Valued Versions of the Geometric

and Harmonic Fibonacci Sequences

It is interesting to note that, although the growth rate of the Fibonacci

sequence is an irrational number, namely the golden ratio, each term of

the sequence is an integer. Note, however, that neither the geometric nor

harmonic Fibonacci sequence is a sequence of integers. So we now define

sequences whose recurrences are given by rounding up to the nearest inte-

ger twice the geometric or harmonic mean of the previous two terms; that

is, consider, for example, a rounded up version of the geometric Fibonacci

sequence, which we denote {gu
n}:

gu
n+2 = d2√gu

n+1g
u
ne with gu

1 = gu
2 = 1.

By bounding this sequence above and below, we can show that it has the

same growth rate as that of the regular geometric Fibonacci sequence {gn}.

Similarly, a rounded down version of {gn} or a rounded up or rounded down

version of the harmonic Fibonacci sequence {hn} can be shown to have the

same growth rates as the corresponding non-rounded versions.

Note that it is initially unclear whether rounded down versions of these

sequences are even increasing. For example, consider the sequence given by
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the recurrence dn+2 = 2.5dn+1 − dn, with d1 = 20, d2 = 10. While this

sequence approaches zero, in fact, the corresponding rounded down version

is decreasing for all n ≥ 1 (20, 10, 5, 2, 0, -2, -5, -11, . . . ) and negative for

n > 5. The absolute value of the terms of this sequence grows exponentially.

When we consider the rounded-up version, we see that for n ≥ 6, the nth

term is (20/256)2n. (The first few terms of this sequence are 20, 10, 5, 3,

3, 5, 10, 20, 40, 80, . . . .) From this example, we see that rounded up and

rounded down sequences may differ vastly from the original sequence. The

above example is ada pted from one mentioned by past NCTM President

Johnny Lott in a recent plenary address to the Tennessee Math Teachers

Association in Memphis. See [3] for a comprehensive theory of rounding.
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