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Abstract

Given a configuration of pebbles on the vertices of a connected graph G, a
pebbling move is defined as the removal of two pebbles from some vertex and the
placement of one of these on an adjacent vertex. The pebbling number of a graph
G is the smallest integer k such that for each vertex v and each configuration of k
pebbles on G there is a sequence of pebbling moves that places at least one pebble
on v. We improve on a bound of Bukh by showing that the pebbling number of
a graph of diameter three on n vertices is at most ⌊3n/2⌋ + 2, and this bound
is best possible. Further, we obtain an asymptotic bound of 3n/2 + Θ(1) for the
pebbling number of graphs of diameter four. Finally, we prove an asymptotic bound
for pebbling graphs of arbitrary diameter, namely that the pebbling number for a

diameter d graph on n vertices is at most (2⌈
d
2
⌉ − 1)n + C′(d), where C′(d) is a

constant depending upon d. This also improves another bound of Bukh.

1 Introduction

A recent development in graph theory, suggested by Lagarias and Saks (via a private
communication to Chung), is called pebbling. Pebbling was first introduced into the
literature by Chung who computed the pebbling number of Cartesian products of paths
to give a combinatorial proof of the following number-theoretic statement of Kleitman
and Lemke.

Theorem 1. [2][8] Let Zn be the cyclic group on n elements and let |g| denote the order
of a group element g ∈ Zn. For every sequence g1, g2, . . . , gn of (not necessarily distinct)
elements of Zn, there exists a zero-sum subsequence (gk)k∈K , such that

∑
k∈K

1
|gk| ≤ 1.

Here K is the set of indices of the elements in the subsequence.

Chung developed the pebbling game to give a more natural proof of this theorem.
Theorems of this type play an important role in this area of number theory as they
generalize zero-sum theorems such as the Erdős-Ginzburg-Ziv [4] theorem. Over the last
twenty years, pebbling has developed into its own subfield [6] [7], with over sixty papers.

Given a connected graph G, distribute k pebbles (indistinguishable markers) on its
vertices in some configuration p. Specifically, a configuration on a graph G is a function
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from V (G) to N ∪ {0}. A pebbling move is defined as the removal of two pebbles from
some vertex and the subsequent placement of one of those pebbles on an adjacent vertex.

A rooted graph is a pair (G, r) where G is a graph and r ∈ V (G) is the root vertex.
We say a pebbling configuration p is potent for a rooted graph (G, r) if there exists a
pebbling configuration p′ obtained by a sequence of pebbling moves from p such that r
has at least one pebble in p′. We say a pebbling configuration p is impotent if there does
not exist such a pebbling configuration. Define the pebbling number π(G) to be the least
integer k such that, for any vertex v ∈ V (G) and any initial configuration p of k pebbles,
p is potent for (G, v). Notice that a trivial lower bound for π(G) is |V (G)| — if one
pebble is placed on each vertex of any subset of |V (G)| − 1 vertices, then we can define
the root vertex to be the unpebbled vertex and we cannot make any pebbling moves to
send a pebble to that vertex.

The pebbling number depends crucially on the diameter of the graph. For instance,
the pebbling number of a path on n vertices is 2n−1. Define f(n, d) to be the maximum
pebbling number of a diameter d graph on n vertices. Pachter, Snevily and Voxman in
[9] proved that f(n, 2) = n + 1. Clarke, Hochberg and Hurlbert in [3] classified graphs
of diameter two whose pebbling number is n + 1. More recently, Bukh [1] proved that
f(n, 3) = 3n/2 + O(1). We prove an exact bound for f(n, 3), namely that f(n, 3) =
⌊3n/2⌋ + 2. We also give short proofs using our techniques of known results concerning
graphs of diameter two.

Furthermore, we obtain two new asymptotic bounds, one for arbitrary diameter and
one for graphs of diameter four. First, we prove an asymptotic bound for pebbling graphs
of arbitrary diameter, namely f(n, d) ≤ (2⌈

d
2 ⌉ − 1)n+ 24d + 1. This improves the bound

of Bukh, who proved that f(n, d) ≤ (2⌈
d
2 ⌉− 1)n+D(n, d), where D is a function of order

O(
√
n) that depends on n and d. For graphs of diameter four, Bukh’s general bound gives

f(n, 4) ≤ 3n +D(n, 4), while our general bound gives f(n, 4) ≤ 3n + 216 + 1. However,
using techniques from our arbitrary-diameter result, we show that f(n, 4) = 3n/2+Θ(1).

2 Preliminaries and Terminology

Let (G, r) be a rooted graph with configuration p; that is p : V (G) 7→ N ∪ {0}, where
p(v) is the number of pebbles on v in p. For vertices u and v, let d(u, v) be the distance
from u to v; that is, the length of the shortest path in G from u to v. When v is the root
vertex r we simply write d(u) instead of d(u, r).

Define the excess of a set of vertices S, denoted X(S), by

X(S) :=
∑
v∈S

(p(v)− 1.5).

With this definition in mind, we say that a set S of k vertices is p-suboptimal if X(S)
is at most zero, and a set with positive excess is p-superoptimal. When p is clear from
context, we will drop it from the notation.

A vertex w is a parent of an adjacent vertex v in rooted graph (G, r) when d(w, r) =
d(v, r) − 1. Likewise, a vertex is a child of its parent. Given a vertex w, the set of
descendants of w is the set of vertices v which can be put in a list w = w1, w2, . . . , wk = v,
where k > 1 and wi−1 is a parent of wi for all i ≥ 2. Similarly, given vertex v the set of
ancestors of v is the set of vertices w which can be put in a list w = w1, w2, . . . , wk = v,
where k > 1 and vi−1 is a parent of vi for all i ≥ 2.

Let F be a subset of the edges of G and p a pebbling configuration on G. We say that
a pebbling configuration p′ is F -reachable if p′ can be obtained from p by a sequence of
pebbling moves which send pebbles only along the edges in F . We say a configuration is
reachable if it is E(G)-reachable.
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Let T be a breadth-first search (BFS) tree of a rooted graph (G, r) with pebbling
configuration p. We say that the pair (B, p) is a branch of (G, r) when B is a subtree of
T and p is restricted to the vertices of B. When p is understood we will simply say that
B is a branch. The base of a branch is the unique vertex in the branch whose distance
to r is minimal. Suppose S ⊆ V (G). Define the pebbling configuration pS as follows:
pS(v) = p(v) if v ∈ S and pS(v) = 0 if v ̸∈ S. For a configuration p, we define p∗(v) to be
the maximum of p′(v) over all configurations p′ that are reachable from p. To simplify
notation when B is a branch, let p∗B(v) = p∗V (B)(v); that is, p

∗
B(v) denotes the maximum

number of pebbles a branch B can send to a vertex v.
The pebbling capacity of a branch (B, p) with base w is the maximum of ⌊p∗B(w)/2⌋

taken over all configurations p′ that are E(B)-reachable from p. A branch B, with base
vertex w, is irreducible if for all vertices v ∈ B, where v ̸= w, the branch induced by v
and its descendants in B has nonzero capacity. The idea is that a larger branch could be
reduced to components involving these irreducible branches.

Remark 1. For a vertex v in an irreducible branch, p(v) + (# of children of v) is at
most 2d(v) − 1.

The depth of branch B is the number of vertices in the longest path contained entirely
in B between the base and a vertex in B.

A vertex v in a branch (B, p) of a rooted graph (G, r) is k-heavy if p∗B(v) ≥ 2k. If G is
a graph of diameter d, we will say that a ⌈d/2⌉-heavy vertex is heavy. Let H(B) denote
the set of heavy vertices of B.

Let (B, p) be an irreducible branch with pebbling capacity zero. For a vertex v ∈ B
we define µB(v), the deficiency of v in B, as the maximum of p′(v) − p(v) over all
configurations p′ such that p′(x) = p(x) for all x ∈ V (B) \ {v}, and (B, p′) has pebbling
capacity zero. That is, the deficiency of v is the maximum number of pebbles that can
be added to v such that the pebbling capacity of the branch is still zero. Further, define
µ(B) as the maximum of µ(v) over all v ∈ B.

Proposition 1. Let (G, r) be a rooted graph with impotent pebbling configuration p. Let
τ be a breadth-first search tree of G, rooted at r. Then we can partition the vertices of
G \ {r} using disjoint irreducible branches of τ with zero pebbling capacity. Further, the
constructed partition of branches of τ is unique.

Proof. Let Z be the set of vertices z ∈ V (G)\{r} such that the branch induced by z and
its descendants in τ has zero pebbling capacity. For each z ∈ Z, let Bz be the maximal
subtree of τ with base z that does not contain another vertex in Z. Note that Bz is a
branch. Let B be the set of all such branches. We claim that B is our desired partition.

To this end, notice that the branches in B cover the vertices of G \ {r}, as each
neighbor of r is in Z by the assumption that p is impotent, and all other vertices in V (G)
are descendants of neighbors of r. Furthermore, the fact that τ is a tree implies that no
vertex is in more than one branch. So we indeed have a partition. By construction, each
branch in B has zero pebbling capacity. The only vertex in a branch with zero pebbling
capacity is the base, and hence each branch is irreducible. Lastly, the partition is unique
since the set Z is well-defined.

The unique partition constructed in Proposition 1 will be referred to as the τ -marking
of (G, r). When τ is clear, we will refer to it simply as a marking of (G, r). Let Bw denote
the branch containing non-base vertex w. Note that Bw is well-defined since the marking
partitions V (G)\{r} with branches and the partition is unique. We say that a vertex is
solitary if it is the only vertex in its branch. Note that in a graph of diameter d with
configuration p, every vertex v such that d(v, r) = d and p(v) ≤ 1 is solitary.

Let L be the set of branches depicted in Figure 1. We shall adopt the following
notation for branches: (1a) is 0-0-7, (1d) is 0-0-(3,5), (1f) is 0-0-(3,3,3), etc.
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Figure 1: The set of branches defined by L. In this figure, the top vertex of every branch
is the base. The top row describes the set of branches with zero deficiency everywhere,
whereas the bottom row gives branches where there is nonzero deficiency in at least one
vertex.

Lemma 1. Let G be a graph with diameter at most three. Then (B, p) is an irreducible,
superoptimal branch of G with pebbling capacity zero if and only if it is an element of L.

Proof. By inspection, every branch in L is irreducible, superoptimal and has pebbling
capacity zero. To prove the converse, let B be a superoptimal irreducible branch with
pebbling capacity zero in a marking of (G, r) with base w. Observe that p(w) ∈ {0, 1}
as otherwise B has nonzero pebbling capacity. Since B is irreducible, if p(w) = 1, then
w has no children. The branch {w}, where p(w) = 1, is suboptimal. So we conclude
that p(w) = 0. If |V (B)| ≥ 2, there is a unique child of w in B, say x. To see this,
notice that, since B is irreducible, each vertex other than w in B must be able to obtain
positive pebbling capacity by pebbling moves from its descendants in B. Thus, if there
is more than one neighbor of w in B, then w could obtain at least two pebbles from these
vertices, a contradiction. Similarly, p(x) ≤ 3.

Suppose p(x) = 3. In this case, there can be no descendants of x in B, as each
descendant must have positive pebbling capacity. However, the branch 0-3 is suboptimal,
so we may assume p(x) ≤ 2. Suppose p(x) = 2. In this case, by similar arguments, there
can be at most one child of x, and it must contain two or three pebbles. This produces
the branches 0-2-2 and 0-2-3, and only the latter is superoptimal. This is case (1c). Now
suppose p(x) = 1. Notice that x can have at most two children in B. If there are two,
then each has pebbling capacity one, producing configurations 0-1-(2,2), 0-1-(2,3), and
0-1-(3,3). Only the last configuration is superoptimal. This is case (1e). If x has one
child, its pebbling capacity is at most two. This gives configurations 0-1-2, 0-1-3, 0-1-4,
0-1-5. Only the last two are superoptimal. This gives cases (2b) and (1b), respectively.

Finally, suppose that p(x) = 0. There are at most three children of x in B, as
otherwise w can receive at least two pebbles. First, suppose there are three children.
The pebbling capacity of each is exactly one. This gives the configurations 0-0-(2,2,2),
0-0-(2,2,3), 0-0-(2,3,3) and 0-0-(3,3,3). Only the last two are superoptimal. These are
(2e) and (1f), respectively. Second, suppose there are two children. If each has pebbling
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capacity one, then we produce configurations 0-0-(2,2), 0-0-(2,3), 0-0-(3,3), which are
all suboptimal. If one of the two children has pebbling capacity two, then we produce
configurations 0-0-(2,4), 0-0-(2,5), 0-0-(3,4), and 0-0-(3,5). The last three configurations
are superoptimal. They are (2d), (2f) and (1d), respectively. Finally, suppose there is
only one child of x. This vertex has pebbling capacity at most three. Since x must
have nonzero pebbling capacity, the feasible configurations are 0-0-4, 0-0-5, 0-0-6, 0-0-
7. The last three are superoptimal. They produce configurations (2c), (2a) and (1a),
respectively.

Remark 2. The vertices with deficiency one in L are ‘6’ in (2a), ‘4’ in (2b), ‘2’ in (2d),
‘4’ in (2f), ‘2’ in (2e), and the ‘0’ distance two from r in (2c). The only vertex with
deficiency two vertex is ‘5’ in (2c).

Remark 3. Every branch in L has a heavy vertex.

3 Diameter Two Results

As a way to introduce the techniques used later in the paper, and to simplify known
results, we will give a new proof of the fact that f(n, 2) = n+ 1.

Remark 4. Notice that the only branches of pebbling capacity zero in a marking of a
diameter two graph are the solitary branches 0, and 1, and the non-solitary branches 0-2,
0-3.

Theorem 2 (Pachter, Snevily, Voxman). Let G be a graph with n vertices and diameter
two. Then π(G) ≤ n+ 1. Furthermore, f(n, 2) = n+ 1.

Proof. First we show that π(G) ≤ n + 1 by showing that any impotent pebbling con-
figuration on G has at most n pebbles. To this end, let r ∈ V (G) and consider the
rooted graph (G, r) with impotent pebbling configuration p. Let M be a marking of G.
Since p is impotent, p∗(v) ≤ 3 for all v ∈ V (G). Let T = {v ∈ V (G)|p(v) = 3} and
U = {u ∈ V (G)|p(u) = 0 and u solitary}.

Let t1, t2 ∈ T . It must be that t1 is not adjacent to t2, otherwise t1 could receive a
pebble from t2, a contradiction. Since G is diameter two, there must exist a vertex u
adjacent to both t1 and t2. If p(u) ̸= 0, t1 could receive a pebble from t2, a contradiction.
Moreover, since u can receive a pebble from both t1 and t2, u is distance two from r. But
this implies that u is solitary. Furthermore, there does not exist a vertex w with at least
three neighbors, call them t1, t2, t3 in T . Otherwise w could receive a pebble from both t2
and t3 and then send a pebble to t1, a contradiction. Hence, it follows that |U | ≥

(|T |
2

)
.

Note that
∑

x∈V (G) p(x) = n − 1 + |T | − |U |. This follows from Remark 4 as each
vertex in T is part of a 0-3 branch that contributes three pebbles, one more than the
number of vertices in its branch, to the sum. Similarly, each vertex in U contributes no
pebbles to the sum, one less than the number of vertices in its branch. The other two
types of branches, 1 and 0-2, contribute exactly the number of pebbles to the sum as the
number of vertices in its branch.

However, |T |−|U |−1 ≤ |T |−
(|T |

2

)
−1 from above. Yet this equals −(|T |−1)(|T |−2)/2,

which is always nonpositive and equal to zero only if |T | = 1 or 2. Hence,
∑

x p(x) ≤ n.
To prove f(n, 2) = n + 1, we need to exhibit a graph of diameter two with pebbling

number |V (G)|+1. To this end, let G be the bipartite graph Kn−1,1. Let {v1, . . . , vn−1}
be the vertices of the side of the partition of size n−1 and let vn be the other vertex. Set
p(v1) = 3, p(v2) = · · · = p(vn−2) = 1 and set p(vn−1) = p(n) = 0. Let the root vertex be
vn−1. This configuration of n pebbles is clearly impotent, and hence π(G) ≥ n+ 1.
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A trivial lower bound on the pebbling number of any graph is n, which is witnessed
by the configuration that places one pebble on every vertex except for the root. Thus,
Theorem 2 implies that the pebbling number of a graph of diameter two is either n or
n + 1. Next, in Theorem 3, we give a new proof of the characterization of those graphs
of diameter two with pebbling number n+ 1, and hence those with n as well.

Theorem 3 (Clarke, Hochberg, Hurlbert). Let G be a graph of diameter two. Then
π(G) = n + 1 if and only if G has a cutvertex or G contains a six-cycle C = v1 . . . v6
such that for all i, j where 1 ≤ i < j ≤ 3, {v2i, v2j} is a 2-cut in G which separates C.

Proof. Let r ∈ V (G) be the root of G. If G has a cutvertex v that separates r from some
w ∈ V (G), we can define an impotent pebbling configuration p on (G, r) with n pebbles
as follows: let p(r) = 0, p(v) = 0, p(w) = 3, and p(x) = 1 for all x ̸= r, v, w. On the other
hand, if G contains a six-cycle as described in the theorem, we can define an impotent
pebbling configuration p on (G, v5) with n pebbles as follows: let p(v1) = p(v3) = 3,
p(x) = 0 for x ∈ C\{v1, v3}, and let p(x) = 1 for all x ̸∈ C.

So suppose that π(G) = n+1. Thus there exists an impotent pebbling configuration
p with n pebbles on (G, r) for some r ∈ V (G). Borrowing terminology from the proof of
Theorem 2, either |T | = 1 and |U | = 0, or |T | = 2 and |U | = 1. First suppose |T | = 1
and |U | = 0, let v ∈ T and let w ̸= v be in Bv. We claim that w separates v from r.
Suppose not. Then there exists a path P from v to r in G \ {w}. Let z be the first
vertex on P such that p(z) ̸= 1. If p(z) ≥ 2, we can send a pebble from z along P to v,
a contradiction. If p(z) = 0, then we can send a pebble from v along P to z. Since z is
not solitary, we know z is adjacent to r and z can receive a pebble from a child not in P .
But then z can send a pebble to r, a contradiction. Hence, w is a cutvertex.

So we may assume |T | = 2 and |U | = 1. Let a1 = r and T = {a2, a3}. Let
b3 ∈ Ba2\{a2}, and b2 ∈ Ba3\{a3}. Finally, let b1 ∈ U . Using the proof of Theorem
2, we know C = a1b3a2b1a3b2 is a six-cycle. We claim for all {i, j, k} = {1, 2, 3} that
{bi, bj} separates {ai, bk, aj} from ak. Suppose not. Then there exists a path P from
A = {ai, bk, aj} to B = {ak} in G \ {bi, bj}. Notice that none of the vertices in C
can receive a pebble from V (G)\C as then p would be potent. Moreover, either all the
vertices in A or all the vertices in B can obtain two pebbles from pebbling moves inside
that set. Call this set A0 and the other B0. Let z be the first vertex along P , starting
from A0, such that p(z) ̸= 1. If p(z) ≥ 2 we can send a pebble from z along P to A0,
a contradiction. If p(z) = 0 we can send a pebble from A0 along P to z. Since z is not
solitary, z is adjacent to r. But then z can send a pebble to r, a contradiction.

4 Lower Bounds

To obtain tightness in our bounds for graphs of diameter three and four, we must con-
struct graphs such that f(n, 3) = ⌊3n/2⌋ + 2 and f(n, 4) = 3n/2 +O(1). The following
graphs achieve this for f(n, 3) with p as shown. A variant of this graph appears explicitly
in [1] and a similar graph is described in [5]. In Figure 2, the vertices in the box form
a clique. Notice that we have placed ⌊3n/2⌋+ 1 pebbles on each of these configurations
and yet we can not move a pebble to r. For f(n, 4), increase the length of the leftmost
branch of each graph in Figure 2 by one, and place fifteen pebbles on the bottom vertex
of this branch while deleting the seven from its parent. This gives a diameter four graph
with pebbling number ⌈3n/2⌉+8. This structure also gives the best known lower bound
for f(n, d), when we extend each of the branches to be length ⌈d/2⌉. This gives a bound

of f(n, d) ≥ (2⌈
d
2
⌉−1)

⌈ d
2 ⌉

n+C(d), where C(d) is a positive constant depending only upon d.

As a result we have proved the following theorems:

6



Theorem 4. The following inequality holds:

f(n, 3) ≥ ⌊3n/2⌋+ 2.

Theorem 5. For every positive integer d, there exists a constant C(d) such that

f(n, d) ≥ (2⌈
d
2 ⌉ − 1)

⌈d
2⌉

n+ C(d).

In particular, if d = 4, f(n, d) ≥ ⌈3n/2⌉+ 8.
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Figure 2: Lower bounds for n even and n odd.

5 Diameter Three Results

In this section, let (G, r) be a rooted graph of diameter three on n vertices. Let p be an
impotent pebbling configuration on (G, r) and let M be a marking of (G, r) using p with
respect to some breadth-first search tree τ . Since M partitions V (G)\{r} uniquely into
branches, we will write µ(v) for the deficiency of v instead of µBv (v). We seek to prove
the following theorem.

Theorem 6. Let G be a graph on n vertices with diameter three. Then π(G) ≤ ⌊3n/2⌋+2.
Furthermore, f(n, 3) = ⌊3n/2⌋+ 2.

It suffices to prove that π(G) ≤ ⌊3n/2⌋+2, as Theorem 4 yields f(n, 3) ≥ ⌊3n/2⌋+2.
To this end, we prove that

∑
x∈V (G) p(x) ≤ ⌊3n/2⌋ + 1. We may assume there exists

a superoptimal branch in M as otherwise the branches themselves would be a partition
of V (G)\{r} into suboptimal sets, showing that G itself is suboptimal. Let B0 be a
superoptimal branch such that µ(B) is minimized over all branches in M . Let w0 be a
non-base vertex in B0 such that µ(w0) is minimized, and subject to that condition, p(w0)
is maximized. Note that µ(w0) = 0 unless w0 is the ‘0’ distance two from r in (2c), in
which case µ(w0) = 1.

Our goal is to show that most of the superoptimal branches have corresponding subop-
timal branches whose negative excess balances out the positive excess of the superoptimal
branches. As we will show, this will be sufficient in proving Theorem 6.

Definition. Let B ̸= B0 be a superoptimal branch in M . A vertex v is a primary
candidate of B if

1. d(v, w0) ≤ 1,
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2. p∗B(v) ≥ 1,

3. v ̸∈ B.

Lemma 2. Every superoptimal branch B ̸= B0 in M has a primary candidate.

Proof. By Remark 3, B has a heavy vertex. Let v ∈ H(B). Since v is heavy, d(v) = 3.
Note that v is at least distance two from w0, as otherwise v could send two pebbles to w0,
a contradiction as µ(w0) ≤ 1. If v is distance two from w0, then v can send a pebble to
w0. In this case, w0 is a primary candidate of B. So suppose that d(v, w0) = 3. Consider
a shortest path between v and w0 and let u be the vertex on the path adjacent to w0. It
is clear that d(u,w0) = 1 and that v can send a pebble to u.

Now u is a primary candidate of B unless u ∈ B. So suppose u ∈ B. Note that
u is not adjacent to r, as otherwise u could receive a pebble from v and from B0 (as
p∗B0

(w0) ≥ 2) and then send a pebble to the root. Suppose d(v) = 2. Notice that in all
branches of L, there is a unique vertex distance two from r. Hence, this must be vertex
u in B. But then u is adjacent to v, and so d(u,w0) = 2, which is considered in the
previous paragraph. Thus it must be that d(u) = 3 as d(u, v) = 2. Hence, p(u) ≥ 2
and B is not (2c). This implies that µ(w0) = 0 and yet u can send a pebble to w0, a
contradiction.

Definition. Let B ̸= B0 be a superoptimal branch in M . A primary candidate v of B
is a primary goal of B if

1. p(v) = 0,

2. v is solitary.

Notice that the conditions for a vertex v being a primary goal are equivalent to v
being unable to obtain a pebble from its own branch Bv. That is, p

∗
Bv

(v) = 0.

Definition. Let B ̸= B0 be a superoptimal branch in M . A vertex v is a secondary goal
of B if

1. d(v, w0) = 2,

2. p∗B(v) ≥ 2,

3. p(v) = 0 and v is solitary.

The idea behind candidates and goals is that every superoptimal branch has a can-
didate vertex. A goal is something to aim for because we can group a goal with a
superoptimal branch later in the proof so that their combined excess is nonpositive. We
say that a vertex is unshared if it is a primary candidate of only one superoptimal branch
B ̸= B0 or if it is the primary or secondary goal of only one superoptimal branch B ̸= B0.
Notice that if a vertex v is a primary or secondary goal, then v is solitary. We want goals
to be unshared because then it is possible to uniquely pair them with a superoptimal
branch so that no two superoptimal branches share the same goal. Furthermore, p(v) = 0
and hence X(Bv) = −1.5.

Lemma 3. If B ̸= B0 is a superoptimal branch in M such that µ(B) = 0, then B has
an unshared secondary goal.

Proof. Note that µ(B0) = 0 since, by definition, µ(B0) ≤ µ(B). Hence B and B0 are
isomorphic to one of (1a)-(1f). Also, µ(w0) = 0 and w0 is heavy. Let v be a heavy vertex
in B. Then v is distance three from w0 as otherwise v could send a pebble to w0. Thus
there exists a vertex u adjacent to v such that d(u,w0) = 2. Since u is adjacent to v,
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p∗B(u) ≥ 2, which implies that u ̸∈ B0. Similarly since d(u,w0) = 2, p∗B0
(u) ≥ 1, which

implies that u ̸∈ B.
Since w0 can send a pebble to u and yet u cannot send a pebble to v, it must be

that u cannot receive a pebble from its own branch. That is, p∗Bu
(u) = 0. This can only

happen if u is solitary and p(u) = 0. Thus u is a secondary goal of B. Finally suppose u
is a secondary goal for another superoptimal branch B′ /∈ {B0, B}. Now B′ could send
two pebbles to u, and then u could send a pebble to v, a contradiction. Hence u is an
unshared secondary goal of B.

Lemma 4. Suppose that µ(w0) = 0. If u is a primary candidate of a superoptimal
branch B ̸= B0 in M , then u is unshared. Furthermore, if u ̸∈ B0, then u is an unshared
primary goal of B.

Proof. First suppose that u is a primary candidate of another superoptimal branch B′.
Note that u could receive a pebble from both B and B′ and thus send a pebble to w0, a
contradiction to the assumption that µ(w0) = 0. Hence u is unshared. Now suppose u
could receive a pebble from its own branch. Since u is a primary candidate of B, u could
also receive a pebble from B. Hence u could send a pebble to w0, a contradiction. Thus
p∗Bu

(u) = 0 and u is an unshared primary goal of B.

Let S denote the set of superoptimal branches in M . Let F be the set of all primary
and secondary goals of elements of H \B0.

Lemma 5. If µ(w0) = 1, then |F| ≥ |S| − 5.

Proof. Since µ(w0) = 1, it must be that all superoptimal branches are isomorphic to
(2c). Also, w0 is the ‘0’ distance two from r in (2c). By Lemma 2, every Bi ∈ S \ B0

has a primary candidate. Choose such a primary candidate of Bi and let ui denote this
vertex. Let U denote the set of all the ui. Note that ui ̸∈ Bj for all i ̸= j. Otherwise,
since ui could receive two pebbles, one from each of Bi and Bj , ui would have to have
deficiency at least two. Hence ui would have to be the ‘5’ in Bj . But then ui could send
two pebbles to w0, a contradiction.

Now we claim that there exists at most one vertex v such that |{uj ∈ U |uj = v}| ≥ 2.
Suppose not, then there exists a vertex v1 that is a primary candidate of one pair of
branches and another vertex v2 that is a primary candidate of another distinct pair of
branches. Then from their pairs, v1 and v2 can each receive two pebbles simultaneously.
Each can then send a pebble to w0, a contradiction.

Now suppose one such vertex v exists. We claim that every chosen primary candidate
ui ̸= v is a primary goal. Note that v can receive a pebble from each of the branches
for which it is a candidate. Hence v can send a pebble to w0. Thus none of the vertices
in B0 can receive any more pebbles as the root could then receive a pebble from B0, a
contradiction. This implies that ui ̸∈ B0. It also implies that p∗Bui

(ui) = 0. Otherwise, ui

could obtain a pebble from its own branch and receive a pebble from Bi. Then ui could
send a pebble to B0, a contradiction to the statement above. Indeed, ui is a primary
goal. Since |{ui ∈ U |ui ̸= v}| ≥ |S| − 4 (as otherwise v could send two pebbles to w0)
and every one of them is a primary goal, we find that |F| ≥ |S| − 4.

So suppose that no such vertex v exists. We claim that there exist at most two vertices
u ∈ U \V (B0) such that u is not a primary goal. To see this, suppose there exist at least
three vertices. Since these vertices are not primary goals, they can obtain a pebble from
their own branch. Suppose that two of them, say u1 and u2 without loss of generality,
are not in the same branch. Then u1 and u2 can each obtain two pebbles simultaneously;
u1 can receive one from Bu1 and one from B1 while u2 can receive one from Bu2 and one
from B2. But then each can send a pebble to w0, a contradiction.
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So suppose all three are in the same branch B′. We claim that none of these three
vertices can be the base. Suppose that vertex u3 was the base. Then it receives two
pebbles as follows. Since w0 receives two pebbles from B0, a pebble is sent to u3 from
w0. An additional pebble is sent to u3 as it is the base of branch B′. Thus, none of
the three vertices can be the base. However, since B′ has diameter two, then at least
two of the vertices, say u1 and u2 are on the same level. As a result, their induced
subbranches are disjoint and have nonzero capacity. Thus they can each obtain two
pebbles simultaneously as above and then each can send a pebble to w0, a contradiction.

Note that the first ‘0’ in B0 has deficiency zero and hence cannot be a primary
candidate. Thus at most four of the vertices in U are not primary goals, as there are
at most two such vertices not in B0 and at most two in B0. Since each element in U is
chosen by a unique element in S \B0, we find that |F| ≥ |H| − 5.

We are now prepared to prove Theorem 6.

Proof of Theorem 6. It is sufficient to prove that X(F ∪
∪

B∈S V (B)) ≤ +2.5, as all
suboptimal branches have nonpositive excess.

First suppose that µ(B0) = 0. In this case, B0 is isomorphic to one of (1a)-(1f). Note
that X(B0) ≤ 2.5. Let B be a superoptimal branch not equal to B0. By Lemma 2, B
has a primary candidate u. By definition, u can receive a pebble from B. Thus u ̸∈ B0

since every element of B0 has deficiency zero. By Lemma 4, u is an unshared primary
goal of B. Thus X(u) = −1.5. Hence, X(u) +X(B) ≤ 0 unless X(B) > 1.5. But then
B is isomorphic to one of (1a)-(1f). Thus µ(B) = 0. By Lemma 3, B has an unshared
secondary goal u′. Since X(u′) = −1.5 and X(B) ≤ 2.5, we find that in all cases the
sum of the excesses of B and B’s goals is nonpositive. Since all the goals are unshared,
X(F ∪

∪
B∈S V (B)) ≤ X(B0) ≤ 2.5, as desired.

So we may assume that µ(B0) ≥ 1. Suppose that µ(w0) = 0. Hence B0 is isomorphic
to one of (2a), (2b), (2d), (2e), or (2f), while each of the other elements in S is isomorphic
to one of (2a)-(2f). Thus X(B) ≤ 1.5 for all B ∈ S. Let B be a superoptimal branch not
equal to B0. By Lemma 2, B has a primary candidate u. By definition, u can receive
a pebble from B. By Lemma 4, u is an unshared primary goal of B unless u ∈ B0. If
u ̸∈ B0 then we are finished because X(u) +X(B) ≤ 0 which implies that all the goals
except for B0 are unshared and we obtain X(F∪

∪
B∈S V (B)) ≤ X(B0) ≤ 2.5, as desired.

Consider the case when u ∈ B0. Since B0 is isomorphic to one of (2a), (2b), (2d),
(2e), or (2f), it follows that the vertex u is unique because, for each of (2a), (2b), (2d),
(2e), and (2f), there is exactly one vertex with positive deficiency. As a result, amongst
the set of all branches B ∈ S not equal to B0, there can be at most one branch, call it
B1, that does not have an unshared primary goal. So u1 is the primary candidate of B1.
If B /∈ {B0, B1}, X(B) plus the excess of the goal associated with B is at most zero. As
a result, X(F ∪

∪
B∈S V (B)) ≤ X(B0) +X(B1). This is at most 2.5 unless both B0 and

B1 are both isomorphic to (2a).
Suppose that B0 and B1 are isomorphic to (2a). We claim that B1 has a secondary

goal. Note that w0 is the non-base ‘0’ of B0, because it is the only vertex with non-zero
deficiency. Let v be the vertex in B1 with six pebbles and let u1 be the vertex in B0 with
six pebbles. Vertex u1 is the primary candidate of B1 and so must be at most distance
two from B1 so that it can send a pebble to it. Notice that u1 must be distance three
from the two vertices with zero pebbles on them in B1. Otherwise, at least one pebble
could be placed on one of the vertices with initially zero pebbles on B1 and a pebble can
be placed on the root with the help of the six pebbles on v. As a result, there must be
a path of length two from u1 to B1 and this path must attach to B1 at v. This path
includes an additional vertex yet to be named. Call this vertex v2. Note that v2 is not
in B0 else v could send three pebbles onto B0, a contradiction. Furthermore, u2 cannot
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receive a pebble from its branch as then u2 could obtain four pebbles, one from its branch
and three from v. Then u2 could send a pebble to w0, a contradiction. Thus u2 is a
secondary goal and X(B1) +X(u2) ≤ 0. Hence, X(F ∪

∪
B∈S V (B)) ≤ X(B0) ≤ 1.5, as

desired.
Lastly suppose that µ(w0) = 1. In this case, all of the elements of S are isomorphic

to (2c). Thus X(B) ≤ .5 for all B ∈ S. Recall that a goal has excess −1.5. Hence,
X(F∪

∪
B∈S V (B)) ≤ .5|S|−1.5|F|. By Lemma 5, this is at most .5(|F|+5)−1.5|F| ≤ 2.5,

as desired.

6 Asymptotic Results

As a way to illustrate the techniques that are used to prove an asymptotic bound on
the pebbling number for graphs of diameter four, we improve the O(

√
n) term of Bukh’s

result to O(1). The general bound we obtain has been recently improved by Postle [10],
but we include it here as it briefly illustrates our technique for the diameter four case,
which still is better than Postle’s bound. Recall that a vertex is heavy if p(v) ≥ 2⌈

d
2 ⌉,

where d is the diameter of the graph. Let H be the set of heavy vertices. The excess of
a vertex v ∈ G is defined by X(v) = p(v)− 2⌈

d
2 ⌉ +1. A vertex v is tight if X(v) = 0. Let

T denote the set of tight vertices. Also let Nk(v) denote the set of vertices of distance
at most k from v, and ∂Nk(v) denote the vertices of distance exactly k from v.

Theorem 7. Fix d. Then f(n, d) ≤ (2⌈
d
2 ⌉ − 1)n+ 24d + 1.

Proof. Let (G, r) be a rooted graph with impotent pebbling configuration p. Our proof
is broken up into two parts, depending upon the size of H.

Suppose |H| ≤ 23d + 22d, then we can bound the total excess of G by 24d. Since p is

impotent, X(u) < 2d − 2⌈
d
2 ⌉ for any vertex u ∈ H. It follows that∑

v∈V (G),X(v)>0

X(v) ≤ |H|(2d − 2⌈
d
2 ⌉) ≤ 24d.

So our bound holds with constant 24d, as nonheavy vertices v satisfy p(v) ≤ 2⌈
d
2 ⌉ − 1.

So we may assume that |H| > 23d+22d. We will apply a discharging argument on the
vertices of G. Let the initial charge of each vertex be X(v) and consider the following
discharging rule. For all vertices with charge greater than zero, remove charge X(v) + 1

and distribute this amount uniformly over Cv = {u ∈ V (G) : u ∈ N⌈ d
2 ⌉(v), X(u) ̸= 0}.

We now prove two claims which show that after discharging, each vertex has non-positive
charge. Since the total charge in the graph does not change and the sum of the charge on
each vertex is equal to the sum of the excess over all vertices of G, then the two claims
show that number of pebbles initially on V (G) is bounded above by (2⌈

d
2 ⌉ − 1)n.

Claim 1. Each vertex v ∈ V (G) receives charge from at most 2d heavy vertices.

Proof. Define Rv = {u ∈ V (G) : u ∈ N ⌈ d
2 ⌉(v), X(u) ≥ 1}. Observe that each vertex in

Rv can send a pebble to v. If |Rv| ≥ 2d, this would allow v to send a pebble to the root,
as v could receive 2d pebbles, contrary to the impotence of p. ♢

Claim 2. Assume |H| > 23d + 22d. For any vertex v with X(v) ̸= 0, the charge received

from any heavy vertex u in N⌈ d
2 ⌉(v) is at most 1

2d
.

Notice that proving this claim suffices to prove the theorem because then each non-
tight vertex receives at most 2d · 1

2d
= 1 unit of total charge.
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Proof. Let τ be a spanning BFS tree rooted at some arbitrary v ∈ V (G). Define Av =

{u ∈ V (G) : u ∈ ∂N⌈ d
2 ⌉(v), X(u) ̸= 0, and u is an ancestor of some w ∈ H in τ}. We

wish to account for the location of all the vertices in H so that we can bound |Av|.
Notice that there are at most 2d heavy vertices in N⌈ d

2 ⌉(v), as otherwise v could receive 2d

pebbles. Also, there are at most 2d−1 tight vertices in ∂N⌈ d
2 ⌉(v) which have descendants

in H, as each tight vertex can be made heavy by making pebbling moves from its heavy
descendants in τ . Furthermore, each tight vertex can have at most 2d heavy descendants
in τ . (Recall that the descendants of the tight vertex can be distance at most 2⌊d/2⌋

away, as the graph is diameter d and τ is a BFS tree.)
So far we have determined the position of at most 22d vertices in H. Now, all the

other vertices in H must have a unique ancestor in τ from Av. Moreover, each vertex in

Av is the ancestor in τ of at most 2d vertices in H. Therefore |Av| ≥ |H|−22d

2d
. By our

assumption on the size of H,

|Av| ≥
|H| − 22d

2d
> 22d.

As Av ⊆ Cv, we see that |Cv| > 22d. In particular this holds for all v ∈ H, which suffices
to prove the claim. ♢

Thus, f(n, d) ≤ (2⌈
d
2 ⌉ − 1)n+ 24d + 1, as desired.

7 Diameter Four Results

We will now prove an asymptotic result that gives a tighter bound for the case when
d = 4. In particular, we will show that f(n, 4) = 3

2n + Θ(1). Notice that this bound
beats 3n + O(1), the bound implied by Theorem 7. For this proof, the definition of
excess of a set S of vertices returns to X(S) =

∑
v∈S(p(v) − 1.5). Before we prove the

asymptotic result, we require the following lemma.

Lemma 6. Let (G, r) be a rooted graph of diameter at most four with pebbling configura-
tion p and associated BFS tree τ rooted at r. Partition G into irreducible branches using
a τ -marking, and let B be an irreducible branch with no heavy vertices. The following
statements hold:

1. If the pebbling capacity of B is zero, then X(B) ≤ 0.

2. Suppose the pebbling capacity of B is one. Suppose further that, if an additional
pebble can be placed at the base of B via pebbling moves outside of B, then B still
has no heavy vertex. Then X(B) ≤ 1.

3. If the pebbling capacity of B is one, then X(B) ≤ 1.5.

Proof. We proceed via induction on the number of vertices in B.
We will first show the base case. If there is only one vertex in B, say b, then for the

pebbling capacity of B to be zero, p(b) ≤ 1, thus verifying the conclusion of statement
(i). If the pebbling capacity of B is one, to satisfy the assumption of statement (ii),
p(b) ≤ 2 and to satisfy the assumptions of statement (iii), p(b) ≤ 3. This satisfies the
excess constraints for the conclusions of statements (ii) and (iii).

Now, suppose that branch B, with base b, satisfies the hypothesis of statement (i).
If p(b) = 1 then B = {b}, as any vertices below b must send an additional pebble to b,
contradicting the assumption that B had pebbling capacity zero. Thus, we are finished
by the base case. If p(b) = 0, then b can have one subbranch B1 of pebbling capacity
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at most one. Observe that B1 has pebbling capacity at most one, as it is assumed that
there are no heavy vertices in B. (Instead of repeating this argument many times in
the remainder of this proof, we will implicitly assume it to be the case for any branch
with the same properties as B1.) By our induction hypothesis, X(B1) ≤ 1.5, so the total
excess of B is at most 1.5 - 1.5 = 0, as desired. This proves statement (i).

Next, suppose that branch B, with base b, satisfies the hypotheses of statement (ii).
Notice that p(b) ≤ 2, as otherwise b would contradict the hypothesis of statement (ii). If
p(b) = 2, then if B = {b}, we are finished. Otherwise there could be one subbranch, B1,
adjacent to b. However, its pebbling capacity must be zero, as otherwise b could become
a heavy vertex when another pebble from outside B is placed on it. Thus the total excess
of B is at most .5. If p(b) = 1, then B can only have one subbranch attached to b (if
there were more, then b could become a heavy vertex with an additional pebble), and
this subbranch, call it B1, has pebbling capacity at most 1. Then the total excess of B
is at most -.5 + 1.5 = 1, satisfying condition (ii). Finally, if p(b) = 0, then notice that B
can’t have three subbranches. Otherwise b, with an additional pebble added to it, could
become a heavy vertex. If B has only one subbranch, then B would not have capacity
one. Thus B has two subbranches below b, called B1 and B2. Observe that both of these
two subbranches must also satisfy the hypothesis of statement (ii). Otherwise, if say B1

did not satisfy the hypothesis of statement (ii) we could take a pair of pebbles from the
base of B2, send one pebble to b and then with the additional pebble placed on B, send
a pebble to the base of B1. As a result of this observation, the maximum excess of B1

and B2 is one. Since the excess of {b} is -1.5, the conclusion of statement (ii) is satisfied
as 2(1) - 1.5 = .5.

Finally, suppose that branch B, with base b, satisfies the hypotheses of statement
(iii). If p(b) = 3, then B = {b} and we are finished. If p(b) = 2, then there can be one
subbranch, B1, adjacent to b. This subbranch must satisfy the hypothesis of statement
(ii) as b could send a pebble to the base of B1. The maximum excess is therefore at most
.5 + 1 = 1.5, which satisfies the conclusion of statement (iii). Suppose p(b) = 1. If there
is one subbranch, B1, adjacent to b, then the total excess of B is at most -.5 + 1.5 =
1, which satisfies the conclusion of statement (iii). Otherwise there are two subbranches
adjacent to b, B1 and B2, each of which must satisfy the hypothesis of statement (ii),
as we can send a pebble through b down to their respective bases. The maximum total
excess of B is at most -.5 + 1 + 1 = 1.5, as desired. Finally, suppose p(b) = 0. In this
case there can be up to three subbranches B1, B2, B3 adjacent to b. If there are three
subbranches, then all must satisfy the hypothesis of statement (ii), and the total excess
is -1.5 + 3(1) = 1.5. If there are fewer subbranches, the total excess is at most is -1.5
+ 2(1.5) = 1.5, and if there is one subbranch, the total excess is -1.5 + 1.5 = 0. In all
these cases X(B) ≤ 1.5, and so we have proved the lemma.

Corollary 1. Every superoptimal irreducible branch of diameter at most four with peb-
bling capacity zero has a heavy vertex.

Proof. The statement of the corollary is the contrapositive to part (i) of Lemma 6.

Remark 5. The corollary does not hold for graphs of diameter greater than four. A
counterexample for d = 5 is the branch 0 − 2 − 0 − (0 − 7, 0 − 7, 0 − 7). This is a
superoptimal irreducible branch of pebbling capacity zero with no heavy vertex. Notice
that this counterexample extends for d ≥ 5. In particular, if the three paths are extended
to length ⌈d

2⌉ − 1 and we place 2⌈
d
2 ⌉+1 − 1 pebbles on each end vertex, this gives a

counterexample for odd d where d > 5. Extending one path by an additional edge
produces an analogous bound for even d.

For convenience, we introduce one more piece of terminology. For any branch B and
vertex v ∈ V (B), let B[v] be the subbranch of B induced by v and its descendants in B.
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Proposition 2. If B is a capacity-one, irreducible branch of depth d with a maximum
number of vertices, then all v ∈ B have at most three children.

Proof. If d = 1, by definition the base is unique. We proceed by induction on d. Suppose
that B is a capacity one, irreducible branch with depth d ≥ 2, a maximum number of
vertices, and base w. By irreducibility and the fact that B is capacity one, it is clear
that w has at most three children. For all v ∈ Bw \ {w}, the irreducibility of B implies
that B[v] is also irreducible, and the maximality of B implies that B[v] is maximal as
well. Hence, we are done by the inductive hypothesis as long as all B[v] have capacity
one. So we may assume, for purposes of contradiction, that there exists some vertex
v ∈ Bw \ {w} such that B[v] has pebbling capacity greater than 1. Further, choose v
such that its distance from r is maximal. Thus, for all v′ that are descendants of v in B,
B[v′] has capacity exactly 1.

Let u be the parent of v in B. Consider two cases depending upon p(v). First assume
p(v) = 0. Then v must have at least four children, say c1, c2, c3, c4. In this case, add a
new vertex v′ to the graph as follows. Make v′ adjacent to c1, c2 and u. Remove the
edges c1v and c2v. Let p(v′) = 0. This creates a capacity one branch with depth d and
more vertices than B, a contradiction.

Second, assume that p(v) > 0. If d(v, w) = d − 1 then p(v) ≥ 4. If u does not have
two additional children v1 and v2, expand B by setting p(v) = 2 and adding a new vertex
e which is adjacent to u, and where p(e) = 2. Thus, we have created a capacity one
branch of depth d with more vertices than B, a contradiction. If instead v1 and v2 are
additional children of u, then expand B by adding a new vertex v′ as follows. Let v′

be adjacent to v and delete the edge uv. Make v′ adjacent to the parent of u, and set
p(v′) = 0. Again, we have created a capacity one branch of depth d with more vertices
than B, a contradiction.

If p(v) > 0 and d(v, w) < d − 1, expand B as follows. Remove a pebble from v and
give v an additional child, v′′, where p(v′′) = 2. This again contradicts the maximality
of B.

With this in mind we can prove the following corollary.

Corollary 2. If B is an irreducible branch of depth d with pebbling capacity zero, then

|V (B)| ≤ 1 + 1 + 3 + · · ·+ 3d−2 = 3d−1+1
2 .

Proof. If d ≥ 1, then since B has capacity zero, the base vertex w has one child, w′. We
can then apply the previous proposition to this capacity one subbranch.

One useful consequence of this corollary is that any irreducible, superoptimal, zero
capacity branch of depth at most four has at most 14 vertices.

Lemma 7. Suppose that B is a superoptimal, irreducible, zero-capacity branch of depth
four, with no heavy vertex u in which d(u) = 4. Then it has no vertices with three pebbles
at depth four.

Proof. Suppose, for purposes of contradiction, that there exists a branch B satisfying
the conditions of the lemma with a vertex u which satisfies p(u) = 3 and d(u) = 4. Let
v be the parent of u in B. For any w ∈ B, recall that p∗B(w) defines the maximum
number of pebbles w can obtain from pebbling moves in B. Note that since u is not
heavy, p∗B(u) = 3.

First we claim that p∗B(v) = 2. As B is irreducible, B[v] has nonzero capacity. That
is, v can obtain at least two pebbles by pebbling moves in B[v]. So p∗B(v) ≥ 2. However,
u can send at most one pebble to v. Thus if v could obtain at least three pebbles from
pebbling moves in B, then v could obtain at least two pebbles by pebbling moves in
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B \ {u}. But then v could send a pebble to u, a contradiction. So p∗B(v) ≤ 2. This
implies that B[v] has capacity one.

Since B has zero capacity, the base of B has precisely one child, call it x. Thus x is
the parent of v. We claim that p∗B(x) = 2. As B is irreducible, B[x] has nonzero capacity.
So p∗B(x) ≥ 2. However, v can send at most one pebble to x as B[v] has capacity one.
Thus if x could obtain at least three pebbles from pebbling moves in B, then x could
obtain at least two pebbles by pebbling moves in B \ B[v]. But then x could send a
pebble to v, which would imply that p∗B(v) ≥ 3, a contradiction. So p∗B(x) ≤ 2.

As B is an irreducible, superoptimal, zero-capacity branch, by Corollary 1, B has a
heavy vertex, call it z. As B is zero capacity, z must have depth at least three. Yet by
hypothesis, z cannot be at depth four. Thus z must be a child of x. Since z is heavy,
p∗B(z) ≥ 4. Thus, z ̸= v. Since B is irreducible, B[z] has nonzero pebbling capacity, and
hence x can receive a pebble from z. Therefore, x must not be able to send a pebble to z
by pebbling moves in B \B[z], since p∗B(x) = 2. This implies, since p∗B(z) ≥ 4, that z can
obtain at least four pebbles from pebbling moves in B[z]. But then B[z] has capacity at
least two. Thus x can receive at least two pebbles from z and one from v, implying that
p∗B(x) ≥ 3, a contradiction.

In the proof of the main theorem in this section, Theorem 8, we require two constants:
let bc, the branch constant, be the maximum number of vertices per irreducible, superop-
timal, zero-capacity branch, and let pc, the pebbling constant, be the maximum number
of pebbles per vertex. By Corollary 2, bc = 14. Since G is diameter four, pc = 15.

Theorem 8. Let G be a graph of diameter four on n vertices. Then π(G) ≤ 3n
2 +

(7 · 145 · 155). Furthermore, f(n, 4) = 3n
2 +Θ(1).

Proof. Let r ∈ V (G) and p be an impotent pebbling configuration for (G, r). We will
show that

∑
v p(v) ≤ 3n/2 + (7 · 145 · 155). Combining this with Theorem 5 yields the

theorem.
Let τ be a BFS tree rooted at r such that the τ -marking M of G, whose existence is

guaranteed by Proposition 1, satisfies the following conditions:

1. The number of branches of depth four in M is maximized.

2. Subject to condition 1, the number of vertices v ∈ V (G) such that d(v) = 4,
p(v) = 3 and Bv in M has depth four, is maximized.

It suffices to prove that
∑

B∈M X(B) = O(1). Let S be the set of branches B in M
such that X(B) ≥ 0. Recall that by Corollary 1, every superoptimal branch has a heavy
vertex. For every branch B in S, let vB be a heavy vertex in B of maximal distance from
the base of B. Call this the representative heavy vertex of B. Let H be the set of all
representative heavy vertices.

If |H| < 7b4cp
4
c , then there are fewer than 7b4cp

4
c superoptimal branches in M . Since

for every branch B in M , X(B) ≤ bcpc,
∑

B∈M X(B) ≤ (7b4cp
4
c)bcpc and the theorem

holds.
So we may assume |H| ≥ 7b4cp

4
c . Now we use a discharging argument to show that∑

B∈M X(B) ≤ 0. For every branch B in M , let the initial charge of B be equal to X(B).
Let T be the set of all branches B in M such that B does not have a heavy vertex and
X(B) = 0. Let V (T ) be the set of all vertices that are contained in branches in T . Now
we discharge the branches in S according to the following rule: let B be a branch in S
and let v = vB be its representative heavy vertex. Distribute X(B) + .5 units of charge
from B uniformly over all branches not in T that intersect N2(v), including itself.

We will show that the final charge of each branch is non-positive. To prove this we
need the following two claims.
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Claim 3. Every branch in M \ T receives charge from at most bcpc branches.

Proof. Let B be a branch in M \T . Suppose that B receives charge from more than bcpc
branches. Then by the pigeonhole principle there exists a vertex u ∈ B that is in the
second-neighborhood of pc representative heavy vertices (in fact, we get pc+1). Since each
heavy vertex can obtain four pebbles from its own branch, they can each simultaneously
send a pebble to u. Now u has pc pebbles and can therefore send a pebble to r, a
contradiction since the pebbling configuration was assumed to be impotent. ♢

Claim 4. If |H| > 7b4cp
4
c, then every branch in S sends at most 1

2bcpc
units of charge to

any branch in M .

Proof. Let B be a branch in S with representative heavy vertex v = vB . Note that
X(B)+ .5 < bcpc, as otherwise there would exist a vertex u in B with at least pc pebbles.
But then u could send a pebble to r, a contradiction. Since B discharges X(B)+ .5 units
of charge uniformly to all branches not in T that intersect N2(v), it suffices to show that
there are at least 2b2cp

2
c branches in M \ T intersecting N2(v). To show this, it is enough

to show that there are at least 2b3cp
2
c vertices in N2(v) \ V (T ).

Let κ be a BFS tree of G rooted at v. Let A = {u ∈ V (G)|u ∈ ∂N2(v), and u is the
ancestor in κ of some vertex in H}. We claim that |A| ≥ 6b4cp

3
c . To see this, notice that

there are at most pc representative heavy vertices in N2(v), as otherwise v could receive
pc pebbles, a contradiction. Hence there are least |H| − pc vertices in H that are not in
N2(v). These must be descendants in κ of vertices in A. However, every vertex in A has
at most pc descendants in H, as otherwise such a vertex could receive at least pc pebbles,

a contradiction. Thus, |A| ≥ |H|−pc

pc
>

7b4cp
4
c−pc

pc
≥ 6b4cp

4
c/pc = 6b4cp

3
c .

If |A \ V (T )| ≥ 2b3cp
2
c , then Claim 4 follows as noted above. So we may assume that

|A\V (T )| < 2b3cp
2
c . This implies that |A∩V (T )| > 6b4cp

3
c−2b3cp

2
c ≥ 6b4cp

3
c−2b4cp

3
c = 4b4cp

3
c .

For each branch in T that intersects A, pick a vertex in A ∩ V (T ). Let R be the set of
all such vertices. Note that |R| ≥ |A ∩ V (T )|/bc ≥ 4b4cp

3
c/bc = 4b3cp

3
c .

Let C = {u ∈ N(v)|u is the parent in κ of some w ∈ R}. Note that |C| ≥ |R|/pc ≥
4b3cp

3
c/pc = 4b3cp

2
c , as otherwise there exists a vertex u in C with at least pc children in

R. Each such vertex can simultaneously receive two pebbles, one from its own branch
and one from its descendant in H. Thus u could receive pc pebbles, a contradiction.
Furthermore, note that if |C \V (T )| ≥ 2b3cp

2
c , then |N2(v) \V (T )| ≥ 2b3cp

2
c as C ⊆ N2(v)

and Claim 4 follows as noted above. Thus we may assume that |C \ V (T )| < 2b3cp
2
c .

Hence |C ∩ V (T )| > 4b3cp
2
c − 2b3cp

2
c = 2b3cp

2
c .

Let D = {u ∈ C ∩V (T )|u is the base of Bu in M}. We claim that |(C ∩V (T )) \D| ≤
bcpc. Suppose not. Then there are least pc vertices in N(v) which are from distinct
branches in T and not the base of their own branch. If a vertex is not the base of its own
branch, it can obtain at least two pebbles from its branch. Thus each of these vertices
can send a pebble to v, a contradiction. This claim implies that |D| > 2b3cp

2
c − bcpc ≥

2b3cp
2
c − b3cp

2
c = b3cp

2
c .

Since v is a heavy vertex, d(v) ≥ 3, as otherwise v could send a pebble to r, a
contradiction. Thus, if u ∈ D, we find d(u, r) ≥ 2, as u is adjacent to v. Moreover, since
u is the base of Bu by definition of the set D, Bu has depth at most three.

Now we characterize Bu for u ∈ D. We claim that Bu is of the form 0 − 3 or
0 − 0 − (3, 3). First, observe that the number of vertices in Bu is even as the number
of pebbles on Bu is 3

2 |V (Bu)| (recall that Bu ∈ T implies X(Bu) = 0), which must be
an integer. This implies that Bu does not have depth one. Recall from the proof of
Corollary 2, that there is at most one vertex adjacent to the base of a branch. Thus, if
Bu has depth two, Bu must contain exactly two vertices, and hence Bu is 0-3. Since Bu

has no heavy vertices, there can then be at most three vertices distance two from the
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base of Bu. Thus if Bu is depth three, Bu must contain exactly four vertices and six
pebbles. The only way to distribute the pebbles so that there are no heavy vertices is
0− 0− (3, 3).

We claim that Bu has depth at most two, and thus by the paragraph above is of the
form 0− 3. Suppose not. Then Bu has depth three and Bu is of the form 0− 0− (3, 3).
Hence d(u, r) = 2 (we showed above that d(u, r) ≥ 2) and d(v, r) = 3. Let w be the
parent of v in τ . Consider the BFS tree τ ′ rooted at r, where τ ′ = (τ ∪ {uv}) \ {wv}.
By the properties of irreducibility, the subbranch induced by v and its descendants has
nonzero capacity. We claim that that the branch B′

v containing v in the τ ′-marking M ′

of G has depth four. To see this, notice that u can receive a pebble from Bu and, since v
was not a base vertex in τ , it must be able to send a pebble from B[v] to u. As a result,
pB′

v
(u) ≥ 2. Therefore u is not the base of B′

v. However, u was the base of Bu, a depth
three branch. Since Bu is contained in B′

v, we find that B′
v must have depth four.

If Bv in τ has depth at most three, then M ′ has more branches of depth four than M ,
contradicting the choice of τ . So we may assume that Bv has depth four. Now M ′ has at
least as many branches of depth four as M . However, since v is the representative heavy
vertex of Bv, this implies that Bv has no heavy vertices of depth four. By Lemma 7,
Bv has no vertices with three pebbles at depth four. Yet, B′

v also contains the vertices
in Bu. Thus there are at least two vertices with three pebbles at distance four from the
root that were not in a branch of depth four in M but are in a branch of depth four in
M ′. Thus τ ′ contradicts the choice of τ , and thus proving the claim that Bu has depth
at most two.

For each w ∈ R without a pebble, make pebbling moves in Bw to place a pebble on
w. Then for each u ∈ D, remove two pebbles from the vertex with three pebbles in Bu

to send a pebble to u. Now each vertex in D has one pebble and each vertex in R has
at least one pebble. Each vertex u in D has a child w in R which has a descendant z in
H. Make pebbling moves in Bz so that z obtains four pebbles. Then use these to send
a pebble to w. Now w has two pebbles. Use these to send a pebble to u. Now u has
two pebbles. Use these pebbles to send a pebble to v. However, since we have shown
|D| > b3cp

2
c , we find that v can obtain at least pc pebbles, a contradiction. ♢

Let B be a branch in M . We will show that the final charge of B is non-positive.
First suppose that B is in T . Since the initial charge of B is zero, and since B does
not receive charge from any other branch, the final charge of B is zero. Second, suppose
that B is in S. The initial charge of B is X(B). According to the discharging rules,
B sends X(B) + .5 units of charge to other branches. From Claims 3 and 4 above, B
receives at most .5 units of charge from other branches. Hence the final charge of B is
at most X(B) − (X(B) + .5) + .5 = 0. Finally, suppose that X(B) < 0. Recall that
X(B) =

∑
v∈B(p(v))− 1.5|B|. Since p(v) is integral for all v and |B| is also integral, this

implies that X(B) ≤ −.5. As B receives at most .5 units of charge from other branches,
the final charge of B is at most zero.
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