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Abstract Given a distribution of pebbles on the vertices of a connected graph
G, a pebbling move is defined as the removal of two pebbles from some vertex
. and the placement of one of these on an adjacent vertex. The pebbling number
of a graph G is the smallest integer & such that for each vertex v and each
distribution of & pebbles on G there {s a sequence of pebbling moves that
places at least one pebble on v. We say such a distribution is solvable. The
optimel pebbling number of G, denoted ITopr(G), is the least & such that some j
particular distribution of & pebbles is solvable. In this paper, we strengthen
a result of Bunde et al relating to the optimal pebbling number of the 2 by 1
n square grid by describing all possible optimal confizurations, We find the
optimal pebbling number for the 3 by n grid and related structures, Finally,
we give a bound for the analogue of this question for the infinite square grid.
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1 Introduction

A recent development in graph theory, suggested by Lagarias and Saks (via
a private communication to Chung), is called pebbling. Pebbling was first in-
troduced into the literature by Chung who computed the pebbling number
of Cartesian products of paths to give a combinatorial proof of the following
number-theoretic statement of Kleitman and Lemke.

Theorem 1 [2/f8] Let Z,, be the cyclic group on n elements and let |g| denote
the order of o group element g € Z,. For every sequence g1,ga,..-.0n Of
{not necessarily distinct) elements of Z,,, there exists o zero-sum subsequence
(gk)vek, such that ¥, p I.r,'_lki < 1. Here K is the set of indices of the elements
in the subsequence.

Chung developed the pebbling game to give a more natural proof of this the-
orem. Theorems of this type play an impertant role in this area of number
theory as they generalize zero-sum theorems such as the Erdés-Ginzburg-Ziv
{3] theorem. Over the last itwenty-five years, pebbling has developed into its
own subfield with over sixty papers. Hurlbert has written two survey papers
(6] [7], that outline the history of pebbling in more detail.

Given a connected graph G, distribute pebbles (indistinguishable markers)
on its vertices. Initially, each vertex is assigned a certain amount of pebbles
according to a disiribution D, which is a function D : V(G) — NU{0}. A
pebbling move from a vertex v to an adjacent vertex u takes away two pebbles
at v and adds only one pebble to u. A pebbling sequence is a sequence of
pebbling moves.

Given a distribution D, if we can put one pebble on a “root” vertex v after
some pebbling moves, v is said to be reachable under D. If we can send some
pebbles from one endpoint of an edge e to the other endpoint of e, we say that
e is reachable under D. A distribution D is solvable if and only if all vertices of
G are reachable wnder D. The pebbling number of a graph &, denoted II(G),
is the'least k (k € N) such that any distribution of % pebbles on G is solvable.

The optimal pebbling number of G, denoted IHopr(G), is the least k such
that some particular distribution of & pebbles is solvable. The optimal pebbling
number was first investigated in a result of Pachter, Snevily and Voxman [11]
who showed that Hopr(F,) = [2n/3]. Later, Moews [10] showed that for the
k-cube, Q, (4/3)* < Hopr(Qr) < (4/3)k+2U0ek) Fyrther, computing the
optimal pebbling number is N P-hard by a result of Milans and Clark [9]. The
most recent results refated to optimal pebbling are those of Bunde et al [1],
whose results we will describe in the next section and Friedman and Wyels [4],
who compute the optimal pebbling number of paths and cycles.

2 Optimal Pebbling Results

Definition 1 Given a distribution D, a vertex is said to be k-reachable if we
can put k pehbles onto this vertex after some pebbling sequence. If all vertices
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are k-reachable under D, D is k-solvable. We first state a result of [1] about
2-solvability on the path.

Theorem 2 Every 2-solvable distribution on P, has at least n + 1 pebbles.
Furthermore, the 2-solvable distributions with n 4 1 pebbles consist of "prime
segments” separated by single unoccupied vertices, where a prime segment is
a path with either (1) two pebbles on one verter and one pebble on all other
vertices, or (2) three consecutive vertices having 0,4,0 pebbles, respectively, and
one pebble on all other vertices.

Theorem 2 gives us a lower bound for the number of pebbles required to make
a path P, 2-solvable. In addition, it describes the configuration of an optimal
distribution, which is essential to the proof of Theorem 3.

Definition 2 A graph H is a quotient of a graph G if the vertices of H
correspond to the sets in a partition of V(G), and distinet vertices of H are
adjacent if at least one edge of G has endpoints in the sets corresponding to
both vertices of H. In other words, each set in the partition of V(G) collapses
to a single vertex of H.

The Collapsing Lemma of [1} is widely used in this paper. It is especially
important in the proof of Theorem 6, where we first collapse P,,[0C5 into
F,0Cs.

Lemma 1 {Collapsing Lemma) Let H be a guotient of G via ¢. If a
distribution D' on G s oblainable from a distribution D on G via pebbling
moves, then in H any verter v is D"ﬁ(v) — reachable under Dy. In particuler,
Hopr(G) 2 Hopr(H).

Definition 3 In Pp0K, or Cpl1K2, we call the m copies of K3 the rungs
of the graph. Sm‘ula.rly, in P,0P; or C’mI:IPg, we call the m copies of P the
rungs of the graph

Definition 4 If some pebbling sequence from a distribution D results in a
rung having at least two pebbles, we say that the rung is 2-reachable under D.
If all the rungs are 2-reachable, then collapsing each rung to a vertex yields a
path that is 2-selvable.

Theorem 3 [1] It holds that Hopr (PrKp) = Hopr(CrpOK3) =
Hopr(Mpy) = m form > 2, except that o pr(P0K2) = Hopr{Ce0K3) = 3
and Hopr(Ps0K3) = 6.

In the later proofs, we might refer to the graph B, [0K; as the ladder and
each P, as one side of the ladder.
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3 New Results about P,[0K->

We begin with a few helpful definitions related to our proofs. If a vertex v is
reachable under some distribution IJ, we say that D covers v or v is covered by
D. Moreover, the set of all covered vertices by D is called the coverage of D.
The size of a distribution D, expressed as |D|, is the total amount of pebbles
used in D, while the size of the coverage by a distribution D, expressed as
Cou(D), is the total number of vertices covered by D. A unit is the coverage
obtained by only considering pebbles on a single vertex, called the source,
and ignoring other pebbles. For example, Figure 1 is a unit (indicated by the
shaded region) on P,0Kp and v is a source with four pebbles.

\'J

L S

Fig. 1 A unit with four pebbles on source v.

A block is a combination of several units such that the subgraph induced
by all reachable edges is connected. Note that a unit can also be considered
as a block. For example, in Figure 2, both graphs are composed of two units
{source v has four pebbles and source u has two pebbles). However, the top
-graph is a block while the bottom one is not because the dotted edge is not
reachable.

Seeees;
SusaN

Fig. 2 Connected and unconnected subgraphs induced by reachable edges.

Since units and blocks describe coverages, the size of o unit or a block is
defined as the number of vertices covered by that unit or block. Suppose we
have two vertices u and v, the distence between them, denoted dist(v,u) or
dist(u,v), is the number of edges in a shortest path that connects them. Let
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u be a covered vertex by a distribution D. If u is adjacent to an uncovered
edge, we say that u is on the border of D and we call u a boundary vertez.

Lemma 2 On PpU0Kj, all units of size greater than one has a symmetric
“stair-like” shape. {See Figure 1.)

Proof Suppose 2™ + k (m,k € Z,m > 1, 0 < k < 2™) pebbles are placed on
the source v. If u is a boundary vertex, then dist(v,u) == m. Therefore, on the
occupied side of the ladder, the pebbles can travel a distance of m. However,
on the other side of the ladder, those pebbles can only travel a distance of
m — 1 because the distance between the two sides is 1.

Lemma 3 A block B on Prl1K3 can only have two types of ends: Type I (the
sharp end) or Type II (the kinked end). (See Figure 3.)

Proof Let u© be a vertex on the border of the coverage, v; be an adjacent
covered vertex that is on the same side of the ladder, and v be another
adjacent vertex that is on the opposite side of the ladder (not necessarily
covered).

A

e u v J] :
. EJ‘H évz ‘ I‘\vz

Fig. 3 Type I end (left) and Type II end (right).

Since w is on the border, u is at most 1-reachable. Otherwise, the coverage
can be extended to a new vertex (“extend” means “cover new vertices” and
“new” means “unreachable by the current distribution”). Furthermore, v; and
vg are at most 3-reachable. If v5 is 2-reachable or 3-reachable, we have a Type
1I end (not shown in Figure 3). If vy is 1-reachable, we have a Type I end. If
v is unreachable, we also have a Type II end because v; must be 2-reachable
or 3-reachable.

We now state a definition that helps us describe relationships. between
multiple blocks. If two blocks have a vertex in common, then we say they
interact, We call the vertices covered by both blocks interaction vertices. A
block can be thought of as several interacting units.

Lemma 4 On F,OK,, if two units interact, they can cover at most four new
wertices. In purticular, et most two new vertices can be covered at each end of
the block.

Proof To understand this more easily, we introduce the binary system. If we
write the number of pebbles on one vertex in the binary system, observe that
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we can find the maximum reachability of a vertex n steps away by dropping
the last n digits of that binary number. Therefore, if the original vertex has
mm digits, the maximum steps these pebbles can travel is given by m — 1.

Since by adding two binary numbers we can increase the number of dig-
its by at most one, the maximal distance the pebbles on these two sources
combined can travel increases by at most 1. Because the block has exactly
four unoccupied neighbors (two on each end), we can cover at maost two new
vertices on the left end and at most two new on the right end.

If there is only one interaction vertex between the two units, then we can
only cover one new vertex, which is also between them. (8¢e Lemma 6 for more
details.)

Definition 5 The covering ratio of a distribution D is given by

Cov(D)
ol

which is the ratio between the size of the coverage and the size of the distri-
bution.

Lemma 5 On P,0K,, all units have a covering ratio less than or equal to
2. Specifically, the only unils that have a covering ratio of £ are units whose
sources have twe or four pebbles.

Proof Suppose a source has 2™ + k (m,k e NU{0},m > 0,0 € k < 2™)
pebbles. Then the size of the coverage is given by 4m (2m 41 on one side and
2m—1 on the other). Therefore, the covering ratio of this unit is 4m/(2™ + k).
To find the maximum of this expression, we set &k == 0 and take its derivative.
The unique maximum occurs when m ='1/in(2) = 1.44, Since m € NU {0}, it
is either 1 or 2 or both. After computing the covering ratio, we see that both
yield a covering ratio of 2.

Definition 6 Suppose we have a distribution D on & graph G. Now if we put
some extra pebbles on G to obtain a new distribution I, then we say that
the marginal coverage of these pebbles is Cov(D’) — Couv(D) and the marginal
covering ratio is given by

Cov(D') — Cou(D)
|2 = %

Lemma 6 On FPh,0K;, the covering ratio of two interacting units is al most
3. More specifically, an interaction does not increase the covering rafio unless

a. two sources are adjacent and each has three pebbles or,
b. one source has just one pebble.

Proof' First, by Lemma 5, if two units do not interact, the covering ratio can
be at most 2. Therefore, if we want to obtain a covering ratio greater than
2, these two units must interact. In order for the covering ratio to increase,
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we need to increase the size of the coverage without changing the nwmber
of pebbles used. This means that the number of new vertices covered due to
the interaction must be strictly less than the number of interaction vertices.
Suppose we have a unit /; whose source Has = pebbles and another unit Uy
whose source has y pebbles. _

Now if U and U, have only one interaction vertex and z,y > 2, then the
source must be on the same side of the ladder. Otherwise, there exist at least
two interaction vertices due to the shape of a unit. Besides, there exists one
unreachable vertex (from either unit) between the two units, (See Figure 4.)
Hence, the covering ratio does not change after the interaction because only
one new vertex (the crossed one} is covered,

Fig. 4 Settingzx =4 and y = 2.

If one of the sources has one pebble, U1 and Uz has only one interaction
vertex. Without loss of generality, let us assume that ¥ = I and y > 2. The
interaction can cover at most two new vertices because all vertices are of degree
3. Figure 5 gives an example when the other source has two pebbles. Thus,
the marginal covering ratio U is at most 2. By Lemma 5, the covering ratio of
Us is no more than 2, so the overall covering ratio must be less than or'equal
to 2. ’

In other cases, there exist at-least iwo interaction vertices, so in order to
increase the covering ratio, at least two previously unreachable vertices become
reachable after the interaction. By Lemma 4, at most two more vertices can
be covered at either end, Therefore, both ends have to be extended in order to
obtain a higher covering ratio. That is to say, both sources are able to reach
the rung the other source helongs to after some pebbling moves. Qtherwise,
the ends cannot be extended. _

Cuase 1: If both sources have four or more pebbles, there are at least four
interaction vertices. If both sources are on the same rung, then we have at least

Fig. 5 The interaction between one source and another with only one pebble.
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six interaction vertices. If they are on adjacent rungs, these two rungs consist
of inteTaction vertices. If they are on non-adjacent rungs, all rungs between
them consist of interaction vertices. Besides, by the argument made above,
each rung with the source offers at least one interaction vertex, Thus, we have
at least four interaction vertices, so the covering ratio cannot be increased.

Case 2: If one source has four or more pebbles and the other has three or
less, these two sources must be on adjacent rungs. So there are at least three
interaction vertices, If the two interacting units have exactly three interaction
vertices, these sources must be on opposite sides on the ladder. Therefors, the
source with fewer pebbles cannot reach the other source, and the coverage can
be extended by at most three. (See Figure 5 for one specific example.)

ROOSBE:

Fig. 6 Settingx =6 and y = 3.

Case 3: If both sources have more than one but fewer than four pebbles,
they must be on adjacent rungs or on the same rung. Otherwise, they have
fewer than two interaction vertices. If they are on the same side of the ladder,
there are two interaction vertices. If they are on opposite side of the ladder,
there are two interaction vertices. Since each source has fewer than four peb-
ble, only one pebble can be sent from one source to the other, So if a source
initially has two pebbles, it can have at most three after the interaction. But
the coverage is not affected by the change in the reachability of this source
because it does not send more pebbles to its adjacent vertices after the in-
teraction. Therefore, the only way to reach four new vertices is to have two
adjacent sources with three pebbles. Under this circumstance, the covering
ratio increases from 3 to %, but is still less than 2.

Therefore, two interacting units can never yield a covering ratio greater
than 2 on P,OK,.

Lemma 7 is an extension of Lemma 6 and uses the same idea. To prove the
next lemma, we also condition on the number of interaction vertices.

Lemma 7 On PrLUK5, the covering ratio of a block is at most 2.

Proof We will proceed by induction.

Base Case: Two units interact with each other. The covering ratio of two
interacting units is at most 2 according to Lemma 3.5.

Inductive Hypothesis: For n > 2, suppose the covering ratio of a block that
consists of n units is no more than 2. We want to show that a block that
consists of n + 1 units also has a covering ratio of 2 or less.




Optimal Pebbling on Grids -9

Analysis: Note that a block of n + 1 sources can be decomposed into a block
with n sources and a unit. We look at the number of interaction vertices
between the unit and the block.

Case 1: There is only one interaction vertex. If the source of the unit has
one pebble, we can cover at most two new vertices. If the source of this unit
has more than cne pebble, we observe that at most one other vertex can be -
covered. (Reasons are addressed in Lemma 6.) Hence, the covering ratio overall
is still less than or equal to 2.

Case 2: There exist two or more interaction vertices. According to Lemma
4, we can also show that at most two new vertices can be covered at each
end. Therefore, to obtain a higher covering ratio, the resulting block from the
interaction has to extend on both ends. This requires that the block overlaps
the rung where the source of the unit is. (Otherwise, the configuration will not
extend or extend only on one end.)

— The source of the unit has four or more vertices.
If the block interacts with the unit on a sharp end, observe that there are
at least five interaction vertices. If the block interacts with the unit on a
kinked end, there are at least four interaction vertices. Either way, we will
have at least four interaction vertices and thus not a greater covering ratic.

— The source of the unit has two or three pebbles.

LT

Fig. 7 Sharp end and kinked end.

P
R

. {\_#

Let u,v be two boundary vertices on one end of the block and suppose
without loss of generality that the unit is to the left of the block.

- If the block has a sharp end, the scurce must fall on w or v (see Figure 7)
because otherwise, there will be at least four interaction vertices. Without
loss of generality, let us suppose that the source is on . If we put two peb-
bles on u, u becomes 3-reachable and v becomes 2-reachable, so at most
two more vertices can be covered on the left end. Since previously we ar-
gued that at most two more on the right end of the block can be covered,
the interaction covers at most four new vertices. The marginal covering
ratio of a unit with two pebbles is at most 2. If we put three pebbles on
, % becomes 4-reachable and v becomes 2-reachable, so at most five new
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vertices can be covered. The marginal covering ratio of a unit with three
pebbles is at most % < 2. Therefore, the covering ratio overall is at best
equal to 2. :

If the block has a kinked end, the source must also fall on u or v. If
we have two pebbles on u, u is 3-reachable and at most two new vertices
on the right end of the block can be covered. The marginal covering ratio
is at most 1. If we have three pebbles on u, u becomes 4-reachable and a
maximum of six new vertices can be covered. The marginal covering ratio
is at most 2. If we have two pebbles on v, at most three new vertices can be
covered. The marginal covering ratio is at most % If we have three pebbles
on v, at most five new vertices can be covered. The marginal covering ratio
is at most % Therefore, such interaction cannot raise the covering ratio to
over 2.

Theorem 4 We have that Hopr(PrOKs) > m. Furthermore, in Pp,0K,
(m # 2,8}, an optimal distribution D with m pebbles consists of the following
two types of fundamental blocks, 2-2 blocks end 2-1 blocks. (See Figure 8.)

09 INe9

Fig. 8 A 2-2 block(left) and a 2-1 block(right).

Proof To obtain the lower bound, we apply the idea of maximim covering
ratio. If a distribution D covers F,0K5, then Cov(D) = Zm and since the
the covering ratio is no more than 2, g pr(P,,0K3) > m.

If a block has one kinked end and cne sharp end, the covering ratio is
strictly less than two because the size of this block is odd and there is only an
integer number of pebbles. Therefore, a block of covering ratic two has either
two kinked ends (a kinked-ended block) or two sharp ends (a sharp-ended
block). Since P,[1K has a sharp end, under optimal pebbling, we must put
a block with two sharp ends on one end of the ladder. But if we do that, the
rest of the graph becomes another shorter ladder, so we need to use another
sharp-ended block. In the end, every block we use in the optimal distribution
on P,lK; is sharp-ended.

Now let us suppose that B is a minimal sharp-ended block of covering
ratio two with & sources. Suppose for a contradiction that & > 3. Then we can
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decompose B into a smaller block B’ and a unit U. Since B is a minimal sharp-
ended block, B’ has to be a kinked-ended block to avoid any contradiction.
{Note that in Lemma 7 we argued that the marginal covering ratio of U is
at most 2, so the covering ratio of B’ must be 2 in order to get an overall
covering ratio of 2 after the interaction. So B’ has to be either kinked-ended
or sharp-ended.)

By arguments made in the proof of Lemma 8.6, if there is only one in-
teraction vertex between B’ and U, the resulting block B would still be a
kinked-ended block, so there must be at least two interaction vertices. We
have proved above that if a kinked~ended block is interacting with a unit, the
only way to maintain a covering ratic of 2 is to put three or four pebbles on
vertex ¢. But no matter which way we choose, the resulting block B is still
kinked-ended, which contradicts our assumption. Therefore, if there exists a
block with two sharp ends, it has exactly two sources.

By Lemma 5 and Lemma 6, the only units we can use are units with one,
two, or four pebbles on their sources. We list all possible configurations and
the blocks in Figure 8 are the only ones that are both sharp-ended and of
covering ratio 2.

4 New Results about C,[1Ps, P,,0Cs, and P,,[0Ps

Definition 7 Define Gy to be the graph with the following vertex and edge
sets: V{Ging) = {(e,b) la € Z,b e Z}, E(Gmf) = {{a,b}(e+1,b), (,b)(e, b+
1) | a € Z,b € Z}. Informally speaking, we can think of Giy; as the infinite
grid.

Our graphs of interest, Cr»(0F and P, OP;, are both subgraphs of Giay.
In some of the case analyses in later proofs, we first show how many pebbles
can be covered with a certain amount of pebbles on G, 7, and then apply the
result to the graph we are analyzing. Because clearly, if n pebbles are reachable
on Gip #» no more than n pebbles are reachable on any induced subgraphs of

Gins-

Theorem_5'For m = 3, Hopyr(CnOPs) = m, except that Hopr(C3;0F;) =
4,

Proof We first prove g pr(C30F;) = 4 by case analysis.

Upper bound. First we show that Hopr(C30P;) < 4. We can put four
pebbles on a vertex in the middle row and the distribution is solvable.
Lower bound. We now show that Hopp(C3P;) > 4. If we put three pebbles
on three distinet vertices or on one single vertex, we cannot obtain a solvable
distribution. Therefore, we must put two pebbles on a vertex and one on
another. If the two vertices are adjacent to each other {Figure 9), then we can
cover eight vertices (shaded dots represent vertices that can be covered). If the
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two vertices are not adjacent to each other (Figure 10), then we can cover six
vertices,
However, C300F; has nine vertices in total, so Hopp(C30P;) > 4.

L]
1]

Fig. 9 Two vertices are adjacent,

L

L
UL
!

‘]j
Fig. 10 Two vertices are not adjacent.

For m > 3, we establish the upper and lower bounds separately.
Upper bound., We show Hppr(CnllF;) < m. If m is even, then we put
two pebbles on every other vertex in the middle row and the distribution is
solvable. If m is odd, we first put a pebble on some vertex in the middle
row and two pebbles on one of its adjacent vertices that are also in the middle
row. After that, we put two pebbles on every other vertex in the middie row,
such that no three consecutive vertices have more than four pebbles. In either
case, we need at most m pebbles.

Lower bound. We then show Hgpr(Cp,0P;) > m. By the Collapsing Lemma,

we can collapse Cp,, (0P; into €, [0K;, which has an optimal pebbling number of

m by Theorem 2.3. Since Hopr(Cp,OP;) > Hopr(CrDKS), Hopr(Cp,OPs) >
m.

Theorem 6 Form > 2, Hopr{Pnl)0;) = Hopr(PrOP)=m + 1.
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Proof First, since P, [0P; is contained in P,0Cs, fopr(PnllCs) <
Hopr{Py,0PF;). Hence, if we can prove Hopr(PnOP;) < m -1 and
Hopr{P,0C3) > m + 1, we are done. We establish the upper and lower
bounds separately.

Upper bound. First we show Hppr(Fn,0P;) < m+-1. If we put two pebbles
on one vertex in the middle row and one pebble on all other vertices in the
middle row, we will get a solvable distribution. Therefore, [Topr{P,00P;) <
m+ 1.

Lower bound. We now show o pr(Prn0Cs) = m + 1. First let us collapse
POC; into P,00C,, where C; is a K; with a multi-edge. (See Figure 11.)

0
-

oo w1’

<
3

13
§
)
4
I

.\

o
%
3

ey g

}
Via V2 A3 AVmaa Ve,
U Y,

m,1

C el
Y

Fig. 11 Collapsing the top two rows of PnC3.

By the Collapsing Lemma, T pr (Pp00Cs) > Hopr(P,0C3). Since multi-
edges do not aflect pebbling numbers, Hopr(PnDCs) = Hopr(PrOK3).
Let us suppose for a contradiction that Hopr(P,0C3) = m, then m >
Hopr(PrnCCs) = Hopr(PrnKs). According to Theorem 4, this bound is
tight, so the distribution on FR0C; can be decomposed into two types of
fundamental blocks. (See Figure 8.)

When two adjacent vertices collapse into one vertex, the number of pebbles
on the new vertex equals the sum of the number of pebbles on the original two
vertices. Therefore, we can “un-collapse” Pp[0C; into P, 5C3 by transforming
each vertex on the top row of F,00C, into a K and distributing the pebbles on
that vertex to the corresponding K. Without loss of generality, let us assume
2,2 is occupied.
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We discuss three possibilities in the following case analysis.

Clase 1: Vertex w2 has a single pebble and belongs to a 2-1 block. Under
this configuration, v1,1,%12,%3,1, and w32 are unoccupied and vy ; has two
pebbles. After un-collapsing, ve 3 and v; 3 will share one pebble. If the pebble
remains on vz,z, then vy 3 is unreachable. If the pebble goes to v 3, then vy 2
becomes unreachable. (Note that these might not be the only unreachable
vertices.)

Case 2: Vertex uga 2 has two pebbles and belongs to a 2-1 block. Under this
configuration, vy 1, 1,2, v3,1, and ug 2 are unoccupied and va; has one pebble.
After un-collapsing, vz 3 and vg 2 will share two pebbles. If both pebbles remain
on vg2, v1,3 is unreachable. If one pebble goes to vy 3 and one stays on vy 2,
then vy 3 is still unreachable, If both pebbles are placed on va3, then v
becomes unreachable.

Case 3: Vertex ug 2 has two pebbles and belongs to a 2-2 block. Under this
configuration, v1,1, 41,2, ¥2,1,43,2,%4,1, and 4,2 are all unoccupied and v3,; has
two pebbles. After un-collapsing, vz,3 and wp 2 will share two pebbles. If both
pebbles remain on vg,2, v4,3 is unreachable. If one pebble goes to v2,3 and one
stays on vy 2, then again, v; 3 is still unreachable.

If both pebbles are placed on vg 3, then v; 3 becomes unreachable.

Since the un-collapsing of P,,0C; into a P,[0C3 makes an optimal dis-
tribution nolonger solvable, there exists no solvable distribution with only m
pebbles on PpTOCs, which means Hopr(PrlJCa) > m + 1. This completes
our proof.

5 Introduction to Fractional Pebbling

In this section we give background relating to fractional pebbling, introduced
in [10] and extended in [5]. We begin with basic definitions from {10]. For a
graph G, a function D : V — R2? is called a continuous distribution on G. As
in an integer-valued distribution, the size of D is given by |D| =}, o D(v).
A continuous pebbling move from a vertex v to an adjacent vertex w takes
away t (t € R,t > 0) pebbles at v and adds only £ pebbles to u . The optimal
Jractional pebbling number of G, denoted fropr (&), is the least £ ({ € RT) such
that some particular distribution of ¢ pebbles is solvable,

Lemma 8 gives a criterion to determine whether a vertex v is reachable or
not.

Lemma 8 [5] Let D be a distribution on a graph G. Then there is a sequence
of fractional pebbling moves starting from D whzch places a pebble onT €V if
and only if 3, o, D(v)2795H0N) > 1,

" Lemma 9 relates directly to one of our_g;raphs of interest, the infinite grid
Ginf, which is also a vertex-transitive graph.

Lemma 9 /5] If G = (V,E) is a vertez-transitive graph, then the function
[V 2R given by f(u) = 3, oy, 274459 45 constant for allu e V.
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Theorem 7 [5] If G is a vertes-transilive graph with n vertices, en optimal
continuous distribution on G is obtained by putling % pebbles on each vertex

in G, where m is the constant 3, cy, 2-4H®%) | Therefore, fiopr(G) = Z.

Since Giny has infinite vertices, it does not have an optimal fractional
pebbling number, but we can still find an optimal (or better) distribution by
comparing the covering ratio between different distributions.

A distribution D on a graph G is said to be optimal if the covering ratio
of I is no less than any other distributions on G.

In the next section, we focus on the graph Giny which does not have a
finite optimal pebbling number, but we can still find an optimal distribution
on Ging by figuring out what the greatest covering ratio of a distribution D
on Giny is.

6 New Results about G,y

Lemma 10 On Gy, the shape of a unit is o square end o unit with 2" +
k (n€NU{0},0 <k < 27) pebbles covers (n+1)% + n? vertices. (See Fig.12)

RN

Fig. 12 A unit with four pebbles on G,-nf..

Proof The source is equidistant from all the boundary vertices, so the shape
looks like & square. If the source of the unit has 2™ + k pebbles, the maximum
distance it can travel is n. Therefore, the total number of vertices covered is
{counting from inside out) 1+4+8+ .. +4n=1+4(1+2+ .. +n) =
1+4n(n+1)/2=2n+2n+1=n?+ (n + 1)~
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In addition, a unit has four corner vertices (vertices that are adjacent
to three unreachable vertices). We call the rest of the boundary vertices non-
corner vertices. For example, in Figure 12, vertices vy, v2, v3, and v, are corner
vertices and vertices vs, vg, U7, and vg are non-corner vertices. Unlike a block
on F,0K3, which has only two types of ends, a block on Giny can take
many shapes, but whatever the shape is, its border must contain a certain
configuration.

Lemma 11 On Gy, if o block has more than one pebble, then a boundary
vertex of this block is adjacent to at least one Z-reachable or 3-reachable vertez.
Therefore, the border of the block must possess the following configuration.
(Note that this configuration might not look ezactly the same as the border of
a block, because the other vertices (siriped ones) might also be covered.) (See
Figure 13.)

Fig. 13 The minimal configuration on the border of a block.

Proof Without loss of generality, let us assume that « is a boundary vertex of
a block. Therefore, it must be exactly l-reachable. If u is occupied, it has one
pebble. But since u is not 2-reachable, no pebble can be sent from its adjacent
vertices to u, which means u itself is a block and has only one pebble. This
coniradicts our assumption.

Hence, u is not occupied. This requires that some vertex v adjacent to u is
able to send one and only one pebble to u. Therefore, v is either 2-reachable
or 3-reachable. Then all vertices adjacent to v must also be covered and thus
we have the minimal configuration shown in Figore 13.

In the next lemma, we use the definition of covering ratio in section 3
again, which is given by
Couv(D)
Dl

Lemma 12 The covering ratio of a single unit on Giny is at most 3.25.
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Proof According to Lemma 10, a unit with 2" + £k (n ¢ NU{0},0 < k < 27)
pebbles covers (n -+ 1)% --n? vertices. The covering ratio is given by %%ﬁ
To maximize this value, set k = 0. After using the derivative tests, we find that
this value reaches its unique maximum when n ~ 2.296. However, n € NU {0},
son = 2 or n= 3. When n = 2, the covering ratio is 3.25, and when n = 3,
the covering ratio is 3.125. Hence, the maximum covering ratio is 3.25.

Lemma 13 The margingl covering ratio of a unit on Giny i at most 4.25 if
the interaction happens only on the boundary vertices (I-reachable vertices).

Proof Let D be an initial distribution and U be a unit that interacts with
D. Assume that the source of U has 2™ + k{n € N,0 < k < 2") pebbles. If
a unit does not interact with others, we say this unit is lonely. We assume
that D does not contain lonely units with one pebble because if D contains
those units, we can remove them first and add them after I/ has been added.
Since the interaction only happens on boundary vertices, these units will yield
a marginal covering ratio of 3. .

Case 1: n = 0. The unit has only one pebble and it falls on a 1-reachable
vertex. According to Lemma 11, this 1-reachable vertex is already adjacent to
at least one covered vertex, so at most three new vertices can be covered with
this added source. The marginal covering ratio is 3. This completes Case 1.

Since the interaction happens only on the boundary vertices, these vertices
become 2-reachable after the interaction. Furthermore, if the source of the unit
has more than one pebble, then two pebbles must come to an interaction vertex
from two different edges, which means at least two of the vertices adjacent to
- an interaction vertex are already covered. Now since each vertex is of degree
4, at most two new vertices can be covered by this interaction.

{(Note that only when the interaction happens on the corner vertices can
it cover two new vertices. If it happens on the non-corner vertices, one new
vertex is covered but the size of the coverage remains unchanged.)

Case 2: n = 1. The unit has two or three pebbles. If all corner vertices
are interaction vertices, there should be eight new vertices covered. However,
there are overlaps because the unit is too small. Hence, only six new vertices
can be covered, and the maximal marginal coverage is 7 (including the source
and the six new covered vertices). The marginal covering ratio is % =35or
% 7z 2.33. We take the larger one, which is 3.5.

Case 3: n'’> 2. The unit now has more than three pebbles, which means the
corner vertices are far enough such that they will not interfere with each other.
Under this condition, each interaction on the corner vertex increases the size
of the coverage by 1, and since their are four corners, the size of the coverage
increases by at most 4. Hence the maximal marginal coverage is (n+1)%+n?+4
and the maximal marginal covering ratio is I"—H%z"'—'i. Using the derivative
tests, we see that the function is monotonically decreasing. Therefore, the
maximum value is obtained when n = 2. The maximal marginal covering ratio
i§4.25 (n'=2,k=0). '

Combining all three cases above, we see that 4.25 is an upper bound for the
marginal covering ratio of a unit if it interacts only on the boundary vertices.
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Definition 8 Let D be a continuous distribution on a graph G. We define the
weight of a vertex r under D, written as Wp(r), tobe 3,y Diw)2-distlery

Therefore, Lemma 8 can be written in the following way: Given a distribution
D on a graph G, a vertex v is reachable if and only if W(r) > 1.

Definition 9 Let D be a continuous distribution on a graph G. We define
the excess weight of a vertex v under D, denoted Wp(v), to be Wp(v) — 1 if
Wp(v) > 1 and 0if Wp(v) < L.

Excess weight describes the amount of weighﬁs that do not contribute to the
size of the coverage because a vertex needs only a weight of 1 to be reachable.

Definition 10 Given a continuous distribution D on a graph G, the covering
ratio ceiling is given by :
ZUGV WD(U) - zuEV WD(IU)
EUEV D(‘U‘)

The covering ratio ceiling is also the highest possible covering ratio for a
configuration.

Lemma 14  The covering ratio ceiling of a unil on Gy is of most 9 and
it decreases monotonically os the number of pebbles on the unit grows.

Proof If we put one single pebble on a source 7, ), o\, W(v) is given by 1+ 4%
27 482724125270+ = 143000 4ia27 = 144300 27 = 14442 =,
If W{v) > 1 for some vertex v, v is cavered, but the portion of weight that
is above 1 cannot be transferred to another vertex, Therefore, they should
not be counted when we calculate the covering ratio. Therefore, if we consider
pebbles on just one vertex, we give a table of excess weights and covering ratio
ceiling below. '

Table 1 Excess Weights and Covering Ratio

Num. of Pebbles on Source  Total Weight Excess Weight Covering Ratio Ceiling

1 9 0 9.00
2 18 1 8.50
3 27 4 7.67
4 36 7 7.25
3 45 12 6.60
6 54 17 6.17
7 63 22 5.86
8

72 27 5.63

As we can see, the covering ratio ceiling decreases as the number of pebbles
on the source grows because more vertices will have excess weights with the
increase in the number of pebbles. ‘
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Definition 11 Suppose we have a continuous distribution I} on a graph G.
Now if we put some extra pebbles on G to obtain a new distribution D, then
the marginal covering ratio ceiling of these pebbles is given by

(Coey Wor(0) = Eey Wor () = (Z,er Wo ) — Tpey Wo i)
z:-uev D' (v) - Euev D(v) l

Lemma 15 The marginel covering ratio ceiling of o unit U on Giny is no
more than 6 if the unit interacts not only on the boundary vertices.

Proof Suppose we have a distribution D that excludes lonely units with one
pebble. Now we add a unit U onto the distribution. (If 2 contains lonely units
with one pebble, remove them first and add them after U has been added.
According to the Table 2, such units have a maximal marginal covering ratio
ceiling of 6.)

Fig. 14 Interaction between a unit and a distribution.

If 7 has more than one pebble, there are at least two interaction vertices
as shown in Figure 14 (the shaded vertices belong to U while the crossed ones
belong to 7). Note that I can have mare vertices covered but the crossed ones
are its minimal configuration by Lemma 11. Note also that Figure 14 is not the
only way to have an interaction but it gives a configuration that yields the least
excess weight. Since v, vs,vs, vy, and v are already covered by D, any weight
added on them will become excess weight, Because vg is 1-reachable from U,
it receives a weight of 1 from U, which should be counted as excess weight.
Similarly, vs,vr,vs each contribute an excess weight of at least 0.5. Besides,
v1, U2, V3, and v, initially do not have excess weights on them but after the
addition of U, their weights acquired from D become excess weights. Since
v1, v2, ¥4 each yield an excess weight of at least 0.5 and vz yields at least 1, the
total amount of excess weight increases by 1 +0.5%3+0.5%3+1 = 5. (Actually,
the larger the unit, the more the excess weight, so 5 is but a conservative value.)
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If U/ has only one pebble on its source, its adjacent vertices must be covered
by D because we assume the interaction does not happen on boundary vertices.
Under this circumstance, the excess weight increases by at least 1+ .5%4 = 3.

Table 2 Marginal Weights and Marginal Covering Ratio

#f Pebbles  Total Weight Min. Excess Weight Max. Marg. Cov. Ratic Ceiling

1 9 3 6.0

18 6 6.0
3 27 9 6.0
4 36 12 6.0
5 45 17 5.6
6 34 22 5.3
7 63 27 5.1
B

Therefore, we give a table of marginal covering ratio ceiling above. The
total weight always equals to 9 times the number of pebbles, so in order to
maximize marginal covering ratio ceiling, we minimize the increase in excess
weight.

As we can see from the table, the marginal covering ratio ceiling is at most 6.

Theorem 8 The covering ratio of any distribution D on Giny is al most 6.

Proof We prove this by induction.

Base Case: The covering ratio of a single unit is less than 6 according to
Lemma 12, _

Inductive Hypothesis: For n > 2, suppose the covering ratio of a distribution
that consists of n units is no more than 6. We want to show that a block that

consists of 1 + ! units also has a covering ratio of 6 or less.

Anelysis: Since the marginal covering ratio of a unit is at most 6 by Lemma
13 and Lemma 15, we cannot obtain a distribution whose covering ratio is
greater than 6. :

Conjecture I The cavering ratio of any distribution D on Giny is at most 3.75.

We can consider all vertices in Gy s as lattice points on a plane. Therefore,
they can be expressed as (z,y), where z,y € Z. A distribution that has a
covering ratio of 3.75 has the following property:

— A vertex has either four pebbles or zero pebbles.

— If (z, ) has four pebbles, then (z +4,y), (z —4,7), (z,y+4), (z,y - 4)
all have four pebbles on them.

- (Ome vertex has four pebbles.

Figure 15 gives a local distribution of covering ratio 3.75. The shaded ver-
tices are vertices with four pebbles and the crossed one is the unreachable
vertex for this distribution.
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Fig, 15 A sample distribution of covering ratio 3.75.

Congecture 2 1f Vz,y € Z, (x,y) is reachable under a distribution I on Gyyy,
then the covering ratio of D is at most 3.25.

For example, Figure 16 uses infinite lonely sources with four pebbles to
make the entire graph reachable (the filled vertices are the ones with four
pebbles and the squares indicate their coverage) and the covering ratio of such
a distribution is 3.25 as proved in Lemma 12.
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Fig. 16 A pample distribution of covering ratio 3.25 that packs Giny.
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