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Abstract

Given a configuration of pebbles on the vertices of a connected
graph G, a pebbling move is defined as the removal of two pebbles from
some vertex, and the placement of one of these on an adjacent vertex.
We introduce the notion of domination cover pebbling, obtained by
combining graph cover pebbling ([2]) with the theory of domination in
graphs ([3]). The domination cover pebbling number, ψ(G), of a graph
G is the minimum number of pebbles that are placed on V (G) such
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that after a sequence of pebbling moves, the set of vertices with pebbles
forms a dominating set of G, regardless of the initial configuration of
pebbles. We discuss basic results and determine ψ(G) for paths, cycles
and complete binary trees.

1 Introduction

One recent development in graph theory, suggested by Lagarias and Saks
and called pebbling, has been the subject of much research. It was first
introduced into the literature by Chung [1], and has been developed by many
others including Hurlbert, who published a survey of pebbling results in [4].
There have been many developments since Hurlbert’s survey appeared; some
of these are described in this paper.

Given a graph G, distribute k pebbles (indistinguishable markers) on its
vertices in some configuration C. Specifically, a configuration on a graph G
is a function from V (G) to N ∪ {0} representing an arrangement of pebbles
on G. For our purposes, we will always assume that G is connected. A
pebbling move is defined as the removal of two pebbles from some vertex and
the placement of one of these pebbles pebbles on an adjacent vertex. Define
the pebbling number, π(G) to be the minimum number of pebbles such no
matter what their initial configuration, it is possible to move to any root
vertex v in G after a sequence of pebbling moves. Implicit in this definition
is the fact that if after moving to vertex v one desires to move to another
root vertex, the pebbles reset to their original initial configuration.

In this paper, we will combine two ideas, cover pebbling ([2]) and domi-
nation ([3]), to introduce a new graph invariant called the domination cover
pebbling (DCP) number of a graph, denoted by ψ(G). Recall that a set of
vertices D in G is a dominating set if every vertex in G is either in D or
adjacent to some element in D. The cover pebbling number, λ(G) is defined
as the minimum number of pebbles required such that given any initial con-
figuration of at least λ(G) pebbles, it is possible to make a series of pebbling
moves to place at least one pebble on every vertex of G. The domination
cover pebbling number of a graph G, proposed by A. Teguia, is the minimum
number of pebbles required so that any initial configuration of pebbles can be
transformed by a sequence of pebbling moves so that the set of vertices that
contain pebbles form a dominating set S of G. The motivation for our defi-
nition comes from a hypothetical situation in which one wishes to transport
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monitors along the edges of a network that could ultimately “watch” each
vertex – but half the devices are lost during each move. The pebbles may be
placed on any of the vertices of G, and S depends, in general, on the initial
configuration – most importantly, however, S need not equal a minimum
dominating set. Graphs can be easily constructed to illustrate these facts.
Consider the configurations of pebbles on P4, the path on four vertices, as
shown in Figure 1: For the graph on the left, we make pebbling moves so that

x x x x x x x x5 5

Figure 1: An example where two different initial configurations produce two
different domination cover solutions.

the first and third vertices (from left to right) form the vertices of the dom-
inating set. However, for the graph on the right, we make pebbling moves
so that the second and fourth vertices are selected to be the vertices of the
dominating set. In some cases, moreover, it takes more than the minimum
dominating set of vertices to form the minimal domination cover solution.
For example, in Figure 2 below we consider the case of the binary tree with
height two, where the minimum dominating set has two vertices, but the
minimal dominating set when creating a domination cover solution has three
vertices. This corresponds to several possible starting configurations, e.g.,
the configuration as pictured; or one with a pebble at the leftmost bottom
level vertex and 4 pebbles at the root; or one with 1 and 10 pebbles at the
leftmost and rightmost bottom level vertices respectively.

The above two facts constitute the main reason why domination cover
pebbling is nontrivial. We refer the reader to [3] for additional exposition on
domination in graphs.

The paper is organized as follows. First, we present some basic results
about domination cover pebbling. The remainder of the paper will consist
of proofs that determine the domination cover pebbling number of Pn, the
path on n vertices, Cn, the cycle graph on n vertices, and Bn, the complete
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Figure 2: A reachable minimal configuration of pebbles on B2 that forces a
domination cover solution.

binary tree with height n. A companion paper by Watson and Yerger ([5])
examines the relation between ψ(G) and structural properties of the graph.

2 Preliminary Results

We begin by determining the domination cover pebbling number for some
families of graphs. First notice that for the complete graph Kn on n vertices,
ψ(Kn) = 1. This result is obvious since placing a pebble on any vertex
dominates Kn.

Theorem 1 For s1 ≥ s2 ≥ · · · ≥ sr, let Ks1 ,s2,...,sr be the complete r-
partite graph with s1, s2, . . . , sr vertices in vertex classes 1, 2, . . . , r respec-
tively. Then, for s1 ≥ 3, ψ(Ks1 ,s2,...,sr ) = s1. If s1 = 2, ψ(Ks1,s2 ,...,sr) = 3.

Proof First, the configuration with one pebble on all but one of the vertices
in the largest vertex class does not produce a domination cover solution. So
ψ(Ks1,s2 ,...,sr ) > s1 − 1. Notice next that if there are pebbles on vertices in
two different vertex classes, the configuration contains a domination cover
solution. Thus, any pair of pebbles on a vertex along with another pebbled
vertex can force a domination cover solution. So if there are s1 pebbles, the
only configuration that has not been considered is the one with one pebble
on every vertex in a vertex class that contains si vertices, but this also forces
a domination cover pebbling. Hence, ψ(Ks1 ,s2,...,sr ) = s1; notice how we used
the condition s1 ≥ 3.

For the next theorem we define the wheel graph, denoted Wn, to be the
graph with V (Wn) = h, v1, v2, . . . , vn, where h is called the hub of Wn, and
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E(Wn) = Cn ∪ {hv1, hv2, . . . , hvn}, where Cn denotes the cycle graph on n
vertices.

Theorem 2 For n ≥ 3, ψ(Wn) = n− 2.

Proof
First, ψ(Wn) > n − 3 because placing one pebble on each of n − 3 con-

secutive outer vertices leaves a vertex of Wn undominated. If there is a pair
of pebbles on any vertex, move it to the center, and the domination is com-
plete. Likewise, if there is a pebble on the hub vertex, Wn is dominated.
Thus, consider all configurations containing pebbled vertices that each con-
tain only one pebble and where there is no pebble on the hub vertex. If there
are n − 2 pebbles in such a configuration then there are exactly two outer
vertices that contain no pebbles. Each of these two non-pebbled vertices has
a neighbor in the outer cycle of Wn. This means that any such configuration
is a domination cover solution. Therefore, ψ(Wn) = n − 2.

3 Domination Cover Pebbling for Paths

Theorem 3

ψ(Pn) = 2n+1

(
1 − 8−(kn+1)

7

)
+
⌊αn

2

⌋
,

for n ≥ 3, where n− 2 = αn + 3kn ≡ αn (mod 3).

Proof Let V = V (Pn) = {v1, v2, . . . , vn} with E(Pn) = {v1v2, . . . vn−1vn}.
Consider the configuration where all pebbles are placed on v1. We need at
least 2n−2 pebbles to dominate vn. Likewise, we need at least 2n−2 + 2n−5 +
2n−8+· · ·+2αn pebbles to dominate {vn, vn−1, · · · , vαn+1}. If αn = 0 or 1, then
we have already dominated Pn. Otherwise, αn = 2 and we need one more
pebble on either v1 or v2 to dominate Pn. Thus, under this configuration,

ψ(Pn) ≥ 2n−2
kn∑

i=0

1

8i
+
⌊αn

2

⌋

= 2n+1

(
1 − 8−(kn+1)

7

)
+
⌊αn

2

⌋
,
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since bαn

2
c = 0 for αn = 0 or 1 and bαn

2
c = 1 for αn = 2.

We now use induction to show that

ψ(Pn) ≤ 2n+1

(
1 − 8−(kn+1)

7

)
+
⌊αn

2

⌋
.

The assertion is clear for n = 3. Therefore, we assume it is true for all
Pm, where 3 ≤ m ≤ n − 1. Consider an arbitrary configuration of Pn hav-
ing 2n+1

(
(1 − 8−(kn+1))/7

)
+
⌊

αn

2

⌋
pebbles. Clearly, we can cover dominate

{vn−2, vn−1, vn} in a finite number of moves with 2n−2 pebbles or less. Thus,
we need to dominate Pn−3 with the remaining

2n+1

(
1 − 8−(kn+1)

7

)
+
⌊αn

2

⌋
− 2n−2 = 2(n−3)+1

(
1 − 8−(kn−3+1)

7

)
+
⌊αn−3

2

⌋

pebbles, since ∀n, kn = kn−3 + 1 and αn = αn−3. This number of pebbles is
enough to dominate Pn−3 by hypothesis. Thus,

ψ(Pn) ≤ 2n+1

(
1 − 8−(kn+1)

7

)
+
⌊αn

2

⌋
,

completing the proof.

4 Domination Cover Pebbling for Cycles

We begin by proving that placing all the pebbles on one vertex is the “worst
case” configuration that determines the domination cover pebbling number.

Lemma 4 The value of ψ(Cn) is attained when the original configuration
consists of placing all the pebbles on a single vertex.

Proof The proof relies strongly on the fact that the underlying graph is Cn,
and is by contradiction. Assume first that the worst configuration consists of
more than one set of consecutively pebbled vertices (“islands”). The cardi-
nality of any such island is at most two, for, were it to be three or more, one
could move the pebbles to the inner one or two vertices, thereby causing a
larger number of pebbles to be needed to dominate – a contradiction. Thus
each “island” consists of at most two vertices. Now consider the effect of
moving all the pebbles onto a single island. Once again one reaches a con-
tradiction to the assumption that there could be more than one island since
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after moving all the pebbles to a single island, one would now require more
pebbles than ψ(Cn) to cover dominate the graph.

Next, assume that the island consists of exactly two vertices. Clearly, the
worst initial configuration of pebbles is obtained by placing ψ − 1 pebbles
on one vertex, say v1, and a single pebble on the other vertex, say v2, since
it would now cost more pebbles to reach the v2 side of the cycle. Had,
however, all the pebbles been on v1, we would need at least two more pebbles
to dominate the other vertex adjacent to v2, raising a contradiction. The
statement follows.

Since placing all the pebbles on a single vertex is the worst case, we now
determine the value of ψ(Cn).

Theorem 5 Let Cn be a cycle on n vertices. If n = 2m− 1,m ≥ 2,

ψ(Cn) = 2m+2

(
1 − 8−(km+1)

7

)
+ φ1(m)

and if n = 2m− 2,m ≥ 3,

ψ(Cn) = 2m+1

(
1 − 8−(km+1)

7

)
+ 2m

(
1 − 8−(km−1+1)

7

)
+ φ2(m),

where φ1(m) = 2 bαm/2c − |αm − 1|, φ2(m) = bαm/2c + bαm−1/2c − |αm −
1||αm−1 − 1|, m− 2 ≡ αm (mod 3), and m− 2 = αm + 3km.

Proof By Lemma 4, we assume all ψ(Cn) pebbles are on v1 ∈ Cn. If n = 2m−
1, there are two identicalm paths to cover. We can cover these with 2ψ(Pm)
pebbles. We notice that v1 may be in both dominating sets; |αm − 1| = 1
if v1 is double counted. If n = 2m − 2, there are two paths P1, P2 ∈ Cn

with m − 1 = |P2| = |P1| − 1. Thus we can cover these two paths with
ψ(Pm)+ψ(Pm−1) pebbles. Likewise in this case, we may have double-counted
vertex v1; |αm−1||αm−1−1| = 1 in these cases, i.e. αm ≡ 0 (mod 3);αm−1 ≡
2 (mod 3). Thus we compute the domination cover pebbling number as
follows. When n = 2m− 1

ψ(Cn) = 2ψ(Pm) − |αm − 1|
= 2m+2((1 − 8−(km+1))/7) + 2 bαm/2c − |αm − 1|
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and if n = 2m− 2,

ψ(Cn) = ψ(Pm) + ψ(Pm−1) − |αm − 1||αm−1 − 1|
= 2m+1((1 − 8−(km+1))/7) + 2m((1 − 8−(km−1+1))/7)

+ bαm/2c + bαm−1/2c − |αm − 1||αm−1 − 1|,

as asserted.

5 Binary Trees

In this section, we will compute the domination cover pebbling number for
the family of complete binary trees. Recall that a complete binary tree,
denoted by Bn, is a tree of height n, with 2i vertices at distance i from the
root. Each vertex of Bn has two “children”, except for the set of 2n vertices
that are distance n away from the root, none of which have children. The
root will be denoted by ρ = ρn

Theorem 6 ψ(B0) = 1, ψ(B1) = 2, ψ(B2) = 11, ψ(B3) = 81, ψ(B4) = 609.

Proof The fact that ψ(B0) = 1 and ψ(B1) = 2 are obvious. We next show
that ψ(B2) = 11, as predicted by the general formula of Theorem 7. In
Figure 3, we exhibit a configuration of 10 pebbles on B2 that does not force
a domination cover solution. x
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Figure 3: A configuration of 10 pebbles on B2 that does not force a domina-
tion cover solution.

We will now show that ψ(B2) ≤ 11. Arbitrarily place 11 pebbles on B2.
Consider the following three subcases based on the number of pebbles on
each of the two B1’s connected to the root of B2.
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Case 1: Suppose there are at least two pebbles on each of the two B1’s.
It takes at most two pebbles for each of the B1’s to be dominated. Hence,
after dominating each of the B1’s there are seven pebbles left. If there is a
pebble on either of the two root vertices of the two disjoint copies of B1, then
we have dominated the root of B2. Otherwise, it is always possible to move
a pebble to the root of one of the B1’s, thus dominating the root ρ2. This
process induces a domination cover solution of B2, completing this case.

Case 2: Suppose that neither B1 contains two or more pebbles. Then
there are at least 9 pebbles on the root of B2. Pebble the root of each of the
B1’s, and this case is complete.

Case 3: Suppose that one copy of B1 contains two or more pebbles, call it
B∗

1, and the other copy does not. If there are two pebbles on ρ2, then make a
pebbling move onto the root vertex of the other copy of B1, thus dominating
that other copy and the root. The two pebbles on B∗

1 then dominate this
subtree. Now, if there is exactly one pebble on ρ2, then it takes at most
four additional pebbles from B∗

1 to place an additional pebble on ρ2, and
repeating the procedure when there are two pebbles on ρ2 completes this
part of this case. Finally, if there are no pebbles initially on ρ2, then there
are at least ten pebbles in B∗

1. Then we can use eight of the these pebbles
to place two pebbles on ρ2 and the remaining two pebbles will dominate B∗

1.
This completes the proof of this case.

We now show that ψ(B3) = 81. First, we have constructed in Figure
4 a configuration of 80 pebbles that does not produce a domination cover
solution.
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Figure 4: A configuration of 80 pebbles on B3 that does not force a domina-
tion cover solution.
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Now suppose that we are given a configuration of 81 pebbles on B3. We
wish to force a domination cover solution on B3.

Case 1: If there are fewer than 11 pebbles on each of the two disjoint B2

subtrees in B3, then we can use 17 of the 61+ pebbles on the root vertex to
produce a domination cover solution.

Case 2: If there are at least 11 pebbles on both of the disjoint B2 subtrees,
consider 11 of them to remain on each subtree, so that there is a domination
cover solution for each of the subtrees. If the root has a pebble, then the
result follows, so suppose not. Then we can dominate the root vertex with
the 59 remaining pebbles as follows: One subtree contains at least 30 of
these “extra” pebbles, and thus by the pigeonhole principle one of the 4
paths leading from ρ3, the root of B3, to the bottom of the tree contains at
least 8 pebbles on it, enough to send a pebble to the root, since the pebbling
number π(P4) of the 4-path (3 edges) is 8.

Case 3: Next, consider the case when only one of the two disjoint B2

subgraphs, call it B∗
2, contains at least 11 pebbles. There are at most 70

pebbles somewhere on the graph that are used to dominate the other B2,
call it B′

2, and ρ3. Our strategy will be to move as many pebbles as possible
from B∗

2 to ρ3 while still leaving B∗
2 dominated. The pebbles placed on ρ3 in

this fashion are then be used to reach the two “middle” vertices in B′
2 so as

to dominate it. Notice that two single pebbles on the bottom row of B′
2, each

with a different parent, does not decrease the number of pebbles required to
dominate B′

2 when there are no other pebbles on B′
2 and all pebbles used

in the domination emanate at the root. Also, any preexisting pebbles at ρ3

[or any pebbles on B′
2 other than the above-mentioned two] only make our

strategy easier to implement, so assume that 68 of the extraneous pebbles
are on B∗

2 and the other two are on the bottom row of B′
2 as specified above.

Call the vertices of B∗
2 a (its root); b1, b2 (the “middle vertices”); and

c1, c2, c3, c4 (the bottom vertices). To obtain a domination cover solution
placing either 9 pebbles onto ρ3, or 8 pebbles on ρ3 and a pebble on a is
sufficient. Variations of the argument that follows will be used throughout
this paper. In order to accomplish our task, we will use (in addition to the
68 extraneous pebbles) the 11 pebbles “reserved” to dominate B∗

2 . Now each
pebble sent to ρ3 causes a net reduction of at most 8 pebbles and a pebble
sent to a causes at most 4 pebbles to be lost. Since 9 × 8 = 72 > 68, it
appears that we can’t always send 9 pebbles to ρ3, so let’s try to send 8 to
the root and one to a.
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We claim and prove next that we can send a pebble to ρ3 as long as B∗
2

has a total of 18 or more pebbles on it. Suppose this is impossible. If there
are 18 pebbles on B∗

2, one “a − b − c” path contains at least 5 pebbles, say
a− b1 − c1. The maximum possible number of pebbles on this path is 7, or
else we could send a pebble to ρ3.

Case 3a: If there are exactly 5 pebbles on a− b1 − c1 (13 left over), one
of the remaining 4 vertices has at least 4 pebbles on it, one of which can
reach a. Another pebble can be put on a using the 5 pebbles on the path
a− b1 − c1. We can reach ρ3. Case 3b: If there are 6 pebbles on a− b1 − c1,
then at least one pebble can be placed on a. Of the 12 remaining pebbles,
none is on a (or a pebble can be placed on ρ3), and at most one is on each
of c2 and b2. Hence without loss of generality c3 has at least five pebbles.
But then another pebble can be placed on a, hence a pebble can be placed
on ρ3, a contradiction. Case 3c: Finally, suppose that the path a − b1 − c1
has 7 pebbles on it. By the argument above of the 11 remaining pebbles,
none is on a and at most one is on each of c2 and b2. Again, without loss of
generality c3 has at least five pebbles. Thus another pebble can be placed on
a, hence a pebble can be placed on ρ3, a contradiction.

We had started with 68+11 pebbles on B∗
2. Thus 8 pebbles can be sent

to ρ3 with as few as 15 left on B∗
2. But 15 pebbles do imply that there is

an a− b− c path with 4 pebbles, enough to reach a. With the remaining 11
pebbles, we can dominate B∗

2 , and we can use the 8 pebbles on ρ3 and the
pebble on a to dominate the rest of B3. Thus, ψ(B3) = 81.

We are ready to prove that ψ(B4) = 609. First, consider the following
construction that shows that ψ(B4) ≥ 609. Starting on the left, place one
pebble at every alternate vertex on the bottom row with one exception: For
the last two vertices, we place no pebbles on the left vertex and 601 pebbles
on the right vertex. This construction, similar to those used for n = 2, 3 will
be a canonical one that we will use in general later. The most efficient pebble
domination would be to place a pebble at ρ4 and one on each vertex at the
next to bottom level of the tree. It is elementary to check that this cannot
be done. Hence ψ(B4) ≥ 609. We now prove that ψ(B4) ≤ 609.

Case 1: If there are fewer than 81 pebbles on each 3-subtree, ρ4 contains at
least 449 pebbles, but only 64 of these are required to pebble the 8 vertices
in the next to bottom row. This, together with one more pebble at ρ4,
completes the pebble domination.

Case 2: If there are 81+ pebbles on each 3-subtree, we use 81 to dominate
each subtree, leaving us with 447 pebbles to dominate ρ4. At least 224 of
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these are on one subtree, so one of the 8 paths leading from ρ4 to the bottom
of this subtree contains at least 28 pebbles, enough to reach ρ4.

Case 3: As before the most complicated case is when one subtree, B∗
3 has

81+ pebbles and the other doesn’t. We employ the same pebbling strategy
as for n = 3. Put one pebble on each of 4 bottom vertices in B′

3 (no two
of whom share a parent). Assume that ρ4 is unpebbled, and that there are
just the four aforementioned pebbles on B′

4. We thus have 605 pebbles on
B∗

3. Our proof deviates here from the n = 3 case, and in general, the case of
n ≡ 1 (mod 3) will be seen later to be trickier than the rest. We can clearly
assume, given the strategy being used, that the root ρ∗3 of B∗

3 is unpebbled.
It is a straightforward calculation (similar to the n = 3 case) to verify that
ψ(B∗

3 \ ρ∗3), the domination pebbling number of B∗
3 minus its root, equals 77.

We will now seek to place 33 pebbles on ρ4 – adequate to pebble the next to
bottom row of B′

3 while leaving a pebble at ρ4 – while never dropping below
77 pebbles on (B∗

3 \ ρ∗3). The extra pebble on ρ4 will serve to dominate ρ∗3.
We have 605 pebbles on (B∗

3 \ ρ∗3).
We claim that as long as the number of pebbles does not drop to below 77,

we can get a pebble to ρ4 at a loss of ≤ 16 pebbles. Since (33×16)+77 = 605,
we will be done if we can show that 93 (=77+16) pebbles on (B∗

3 \ ρ∗3) suffice
to send a pebble to ρ4. The pigeonhole principle, the fact that ρ4 has no
pebbles on it, and the observation that no path from ρ4 to the bottom can
have 16+ pebbles, implies that we are guaranteed two a− b− c paths with
12+ pebbles each. If these paths are disjoint, we can move two pebbles to
ρ∗3 and thus one to ρ4, so the paths overlap. There are two possibilities: the
paths may be of the form a − b1 − c1 and a − b1 − c2, or they may overlap
in just the vertex a. In the first case, the worst case scenario is, e.g., when
there are no pebbles on a, one on b1, and 11 on each of the c’s. The second
case is similar. But these configurations too force a pebble onto ρ4. Thus
ψ(B4) = 609.
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Theorem 7 For n ≥ 2,

ψ(Bn)

= (2n−1 − 1) +

bn−1
3

c∑

i=0

(
23i+1 +

n−3i−2∑

j=1

2j−123i+2j+1

)
+

bn+1
3

c∑

k=1

2n−3k+122n−3k+2 + γn,

= T1,n + T2,n + T3,n + T4,n say,

where Ti,n denotes the ith term in the above sum, and γ = γn = 2n−1 if n ≡ 0
(mod 3), and γ = 0 otherwise.

Proof First we will prove that for n ≥ 2

ψ(Bn) > (2n−1 − 1) +

bn−1
3

c∑

i=0

[23i+1 +
n−3i−2∑

j=1

2j−123i+2j+1]

+

bn+1
3

c∑

k=1

2n−3k+122n−3k+2 + γ − 1.

Consider the following initial configuration of pebbles that generalizes the
configuration from Figures 3 and 4. Starting at the left, place one pebble at
each of 2n−1 − 1 vertices on the bottom row, no two of which share a parent.
This leaves the rightmost two vertices on the bottom row unpebbled; we
place all the remaining pebbles on one of these vertices, denoted by v. We
will endeavor to pebble entire rows in the most efficient way – the rows to be
pebbled are specified by working upwards from the bottom of both subtrees
– and we make pebbling moves from v, if possible, so that one pebble is
placed on every vertex in every third row, starting, in each subtree, with the
row that is next to the bottom row. This is clearly the best strategy, since it
“costs” the most to reach the bottom row of the left subtree. Note that the γ
term enters iff n ≡ 0 (mod 3), since then the three topmost vertices of Bn

would be left unpebbled, but we can complete the domination pebbling of the
graph by pebbling the root of the right subtree. This requires γ pebbles. If we
consider rows as single vertices, this would be analogous to the configuration
of pebbles required to get an optimal domination cover pebbling bound for
Pn, except that we pebble every third vertex counted from both ends, adding
a “central γ-correction” if needed.

13



We start by stating that in order to find a domination cover solution for
the subtree that is on the other side of the root vertex v it takes

bn+1
3

c∑

k=1

2n−3k+122n−3k+2

pebbles as follows: Consider the next to bottom row. There are 2n−2 ver-
tices that have a pebble placed on them. For each vertex, it takes 22n−1

pebbles from vertex v, for a total of 23n−3 pebbles. This is the number of
pebbles counted in the k = 1 term of the sum, since 2n−3+122n−3+2 = 23n−3.
We leave the rest of the details – of verifying that the stated expression∑bn+1

3
c

k=1 2n−3k+122n−3k+2 does indeed represent the above pebbling process of
the left subtree – to the reader. A similar (but somewhat more complicated)
computation can be performed to verify the first sum represents the pebbling
of the subtree on the same side as v in the manner desired – except that, due
to the last (-1) term, the vertex right above the “pebble source” remains un-
pebbled. This configuration leaves the other sibling of v undominated. This
proves the claim.

We now proceed to prove the bound by induction. First we note that
a simple Maple computation reveals that the values given by the putative
formula for ψ(Bn) are, for n = 2, . . . 10, equal to 11, 81, 609, 4777, 38105,
304473, 2434969, 19478809, 155827481; the first three of these have already
been proved to be correct in Theorem 6. Note that the asymptotic ratio of
the terms appears to be converging to 8 rapidly, reflecting the fact that the
dominant term in ψ(Bn) is 23n−3. Suppose that the value of ψ(Bn−1) is as
stated in the theorem for n ≥ 5, i.e. n − 1 ≥ 4 (our induction will only
work for these cases). Place ψ(Bn) pebbles on Bn. The rest of this proof will
explain how to construct a domination cover solution with ψ(Bn) pebbles.
As before, we will consider three cases depending upon whether there are
enough pebbles in each of the two disjoint copies of Bn−1 connected to the
root of Bn.

Case 1: First, suppose that neither copy contains ψ(Bn−1) pebbles. In
this case, there are at least ψ(Bn) − 2ψ(Bn−1) + 1 pebbles on the root. We
claim that this number is at least as large as 4ψ(Bn−1) + 1, a number that
would allow us to move ψ(Bn−1) pebbles onto the root of each subtree while
retaining one pebble on the root, thus completing the domination of Bn. It
suffices to show that

ψ(Bn) ≥ 6ψ(Bn−1) (1)

14



in order for the above to be true. We have

ψ(Bn) ≥ 23n−3 (2)

by considering only the k = 1 term of T3,n. Also,

6(T1,n−1 + T4,n−1) ≤ 3 · 2n; (3)

6T3,n−1 = 6

b n
3 c∑

k=1

23(n−1)−6k+3 ≤ 6 · 23n

63
; (4)

and

6T2,n−1 = 6

b n−2
3 c∑

i=0

23i+1 + 6

b n−2
3 c∑

i=0

23i

n−3i−3∑

j=1

23j

≤ 24

7
2n + 6

b n−2
3 c∑

i=0

23i · 8(8n−3i−3)

7

≤ 24

7
2n +

3 · 8n
∑bn−2

3 c
i=0 8−2i

224

≤ 24

7
2n +

6

441
23n. (5)

Equations (2) through (5) show that (1) holds if

23n−3 ≥ 3 · 2n +
6 · 23n

63
+

24

7
2n +

6

441
23n

or if
1

8
− 6

63
− 6

441
≥ 45

7
2−2n,

which holds for n ≥ 5. Of course the fact that ψ(Bn) ≥ 6ψ(Bn−1) holds for
n = 3, 4 as well.

Case 2: Next, suppose that both copies contain at least ψ(Bn−1) pebbles.
In this case we use ψ(Bn−1) pebbles to construct a domination cover solution
for each subtree. At least one subtree thus has 2ψ(Bn−1) ≥ 23n+1

64
extra

pebbles (recalling that ψ(Bn) ≥ 6ψ(Bn−1) and ψ(Bn−1) ≥ 23n−6), so at least
one of the 2n−1 (n + 1)-paths leading to the root vertex (from the bottom

15



of the subtree) has at least 22n

16
pebbles. For n ≥ 4 this number exceeds 2n,

the (regular) pebbling number of Pn+1. We can thus reach the root vertex.
[If n = 3, the exact values of ψ(B3), ψ(B2) show that there are at least 30
pebbles on one of the 2-subtrees and we can reach the root as desired since
one of the paths to the root contains at least eight pebbles.]

Case 3: Finally, suppose that only one copy of Bn−1, call it B∗
n−1, contains

at least ψ(Bn−1) pebbles. We need to do a more careful analysis, since the
strategy to be employed (as in the small cases studied in Theorem 6) is to
move all extraneous pebbles in B∗

n−1 to the root of the tree and then cover
pebble dominate the other subtree, say B′

n−1, from the root using an “every
third row” dominating set. Note that any pebbles in B′

n−1 can substitute
for at least one pebble on the root vertex. We now prove that the worst
case scenario is indeed the one in which all the ψ(Bn) pebbles are in B∗

n−1

– except for the 2n−2 non-siblings in the bottom row of B′
n−1 which can

each be assumed to have a single pebble on them: Let C be a worst case
configuration that contains pebbles on B′

n−1 other than those on the bottom
row. Then moving all of these to the rightmost bottom row vertex of B∗

n−1,
for example, would require us to use more pebbles to cover dominate Bn, a
contradiction to the fact that C is a worst case configuration. Also, as noted
before, removing single pebbles from the non sibling bottom row vertices of
B′

n−1 does not lessen the pebbling number for B′
n−1 starting at the root.

We start by showing that we may place a pebble on ρn (at a loss of at
most 2n pebbles) if there are at least 23n−6 pebbles on B∗

n−1 and thus, since

ψ(B∗
n−1) ≥ 23n−6 + 2n−2 − 1 +

bn−2
3 c∑

i=0

23i+1 ≥ 23n−6 + 2n−2,

if there are at least ψ(B∗
n−1) − 2n−2 pebbles on B∗

n−1 (Of course we will
cause problems if we send a pebble to the root when there are fewer than
ψ(B∗

n−1) + 2n pebbles on B∗
n−1.) To see this, note that one of the 2n−1 paths

leading to the root from the bottom of B∗
n−1 has at least 23n−6/2n−1 = 22n−5

pebbles on it. This number is at least 2n if n ≥ 5, so we can send a pebble
to the root. Similarly, a pebble may be sent to the root of B∗

n−1 if there are
at least 23n−6 pebbles on B∗

n−1. This costs at most 2n−1 pebbles. We have
ψ(Bn) − 2n−2 pebbles on B∗

n−1, and ψ(Bn) − ψ(Bn−1) − 2n−2 of these are
available to pebble B′

n−1. Let’s compute D(n) = ψ(Bn) − ψ(Bn−1) − 2n−2;
by the above argument, we will, e.g. be able to send bD(n)/2nc pebbles to
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the root. We get:

D(n) = 2n−1 +

bn−1
3

c∑

i=0

[23i+1 +
n−3i−2∑

j=1

23i+3j] +

bn+1
3

c∑

k=1

23n−6k+3 + γn

−


2n−2 +

bn−2
3

c∑

i=0

[23i+1 +
n−3i−3∑

j=1

23i+3j] +

bn
3
c∑

k=1

23n−6k + γn−1


− 2n−2

≥
bn−1

3
c∑

i=0

23i+1 −
bn−2

3
c∑

i=0

23i+1 +

bn−1
3

c∑

i=0

23n−6i−6 +
7

8

bn+1
3

c∑

k=1

23n−6k+3 + γn − γn−1

=

bn−1
3

c∑

i=0

23i+1 −
bn−2

3
c∑

i=0

23i+1 +

bn−1
3

c+1∑

i=1

23n−6i +
7

8

bn+1
3

c∑

k=1

23n−6k+3 + γn − γn−1

≥
bn−1

3
c∑

i=0

23i+1 −
bn−2

3
c∑

i=0

23i+1 +

bn+1
3

c∑

k=1

23n−6k+3 + γn − γn−1.

Case 3a. If n ≡ 0 (mod 3), we cover dominate B∗
n−1 using ψ(Bn−1) pebbles.

Note that γn−γn−1 = 2n−1 and these 2n−1 pebbles are used to pebble the root

of B∗
n−1, so that ρn is dominated in addition to B∗

n−1. Also,
∑bn−1

3
c

i=0 23i+1 −
∑bn−2

3
c

i=0 23i+1 = 0. It follows that
∑bn+1

3
c

k=1 22n−6k+3 pebbles can be placed on
the root, and it is easy to check that these suffice to pebble dominate B′

n−1

by placing pebbles on every third row, starting with the next to bottom row.

Case 3b. If n ≡ 2 (mod 3), γn − γn−1 and
∑bn−1

3
c

i=0 23i+1 −
∑bn−2

3
c

i=0 23i+1

both equal zero. We send
∑bn+1

3
c

k=1 22n−6k+3 pebbles to ρn. These suffice to
dominate the left subtree, and in particular the root of B′

n−1 is pebbled, so
that ρn is dominated.

Case 3c. n ≡ 1 (mod 3). This is the delicate case. First,
∑bn+1

3
c

k=1 22n−6k+3

pebbles are sent to ρn. However,

γn − γn−1 +

bn−1
3

c∑

i=0

23i+1 −
bn−2

3
c∑

i=0

23i+1 = −2n−2 + 2n =
3

4
2n, (6)

insufficient to place a crucial extra pebble on ρn. This is needed since the∑bn+1
3

c
k=1 22n−6k+3 pebbles on the root are only sufficient to pebble dominate
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(B′
n−1 \ ρ′n−1). The root ρ′n−1 of the left subtree could have been dominated

by an extra pebble on ρn. However such a pebble would cause the root of
B∗

n−1 to be possibly double dominated, which is sub-optimal. We resolve
the problem by mimicking the n = 4 case. The induction from n − 1 to
n ≡ 1 (mod 3) proceeds as follows: We use ψ(B∗

n−1 \ ρ∗n−1) pebbles to
dominate (B∗

n−1 \ ρ∗n−1). It is easy to check, after all the work done above,
that ψ(B∗

n−1\ρ∗n−1) = ψ(B∗
n−1)−2n−2. We have gained the extra 1

4
2n pebbles

we need, since we do not pebble ρ∗n−1. The modified value in (6) is 2n. ρn is
thus pebbled, and the roots of both subtrees are dominated as a result. This
completes the proof.

6 Open Problems

We are confident that this paper, together with the companion paper [5], will
spark interest in the question of domination cover pebbling. Determination of
the ψ values for several other families of graphs is an obvious open question.
Teresa Haynes has raised the question of determining the domination cover
pebbling number when the pebbles must reach a miminum dominating set.
Other open problems are raised in [5].
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