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Abstract 

In this paper we give a 3-approximationalgorithm for  the 
problem ojJnding a minimum tree spanning any k-vertices 
in a graph. Our algorithm extends to a 3-approximation al- 
gorithm for  the minimum tour that visits any k-vertices. 

1. Introduction 

Given an undirected graph G = (V, E )  with edge costs 
c : E + R+ we consider the problem of finding a mini- 
mum tree spanning k vertices; we call such a tree a k-tree. 
The problem is known to be NP-hard. It has received much 
attention in recent years with a sequence of papers improv- 
ing the approximation guarantee from an initial 3& [ 111 to 
O(log2 k) [ l ]  to O(1ogk) [lo] and finally to 35 [4]. In this 
paper we provide a 3-approximation algorithm to this prob- 
lem. 

For the special case when we are given n points in the 
plane and the cost of an edge is just the Euclidean dis- 
tance between its end-points, it was believed that the min- 
imum k-tree was easier to approximate. Here too a se- 
quence of results improved the approximation guarantee 
from O ( l ~ l / ~ )  [ 111 to O(1og k) [6] to O(1og k /  log logn) [5]  
to 0(1)  [3] and finally to 2 4  [9]. Our approximation factor 
for the general case compares well with the best known for 
this seemingly simpler setting. 

An important technical contribution of this paper is that it 
makes explicit the lower bounds on the optimum value used 
in arriving at the claimed approximation guarantee. We use 
the maximum of two lower bounds as our lower bound. One 
of these is the distance of the farthest vertex from the root. 
While this is not really a lower bound on the optimum value 
it is a lower bound if we assume that the farthest vertex from 
the root is included in the minimum le-tree; this it turns out 
is easy to ensure. The problem of computing the minimum 
k-tree can be formulated as an integer program. Relaxing 
the integrality constraints then gives us a linear program the 
optimum value to which is a lower bound on the cost of the 
minimum k-tree. Our second lower bound relates to the op- 

timum value of this linear relaxation. We are not aware of 
any other research that explores the realtionship between the 
optimum value of this LP-relaxation and the optimum inte- 
gral solution. These two lower bounds independently might 
be significantly away from the optimum. We show however 
that the cost of the minimum k-tree is no more than three 
times the maximum of these lower bounds. We also show an 
instance for which this is tight ie. the cost of the minimum 
k-tree is almost three times the value of our lower bound. 
This implies that there are no improvements possible to the 
3-approximation guarantee using only these lower bounds. 

A problem similar to the minimum k-tree problem is that 
of finding a tour that visits at least k vertices and has min- 
imum cost; we call this the minimum k-tour. A bounded 
approximation guarantee for this problem can be obtained 
only under the assumption that the edge-costs satisfy trian- 
gle inequality. Our approximation algorithm for the min- 
imum k-tree yields a 3-approximation algorithm for this 
problem. This in turn allows us to obtain a better approx- 
imation guarantee for finding a tour that minimizes the total 
latency. Once again we are given an edge weighted graph 
and a root r and we wish to find a tour that visits all the ver- 
tices in an order such that the sum of the latencies of the 
vertices is minimized where the latency of a vertex is its 
distance from the root in the tour chosen. Blum et.al. [2] 
first gave an algorithm with an approximation guarantee of 
144; this was subsequently improved to 21.55 [7].  In [7] 
it is also shown how an a-approximation algorithm for the 
minimum k-tour problem can be used to obtain a 3.55a- 
approximation algorithm for the minimum latency prob- 
lem. Our 3-approximation for the minimum k-tour there- 
fore gives a 10.77-approximation algorithm for minimizing 
latency. 

In Section 2 we 
discuss the two lower bounds used. We then show how 
these lower bounds can be used to obtain a simple 5- 
approximation algorithm for the minimum k-tree problem 
(Section 3). We then develop two techniques to pick the ver- 
tices in a more careful way; this yields the 3-approximation 
algorithm (Section 4). In Section 5 we give the tight e x m -  
ple that shows that the gap between the value of the lower 

The paper is organized as follows. 
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bound used and the cost of the minimum k-tree can be ar- 
bitrarily close to 3. Finally, in Section 6 we show how to 
obtain a k-tour of cost within thrice the optimum. 

2. The Lower Bounds 

In this paper we actually solve the rooted version of the 
minimum k-tree problem. In this version of the problem we 
are given a root vertex r E V and we wish to find the min- 
imum k-tree including the root. A solution to this problem 
also gives a solution to the original one since we can run this 
algorithm for all possible choices of the root and pick the 
minimum Ic-tree. 

We also assume that the distance of the farthest vertex 
from the root is a lower bound on the optimum value. Since 
this is not true for the original graph we work on the sub- 
graph that includes only such vertices whose distance from 
the root is less than the distance of the farthest vertex (from 
the root) in the minimum k-tree. The lack of knowledge of 
this “farthest vertex” in the optimum solution can be gotten 
around by trying all possible vertices and picking the mini- 
mum solution. 

We associate a variable xe with the edge e;  2, = 1 im- 
plies that the edge belongs to the k-tree. We also associate a 
variable 2, with the vertex v and x, = 1 implies that the 
k-tree spans U ;  thus CvEV xu = k. For every subset of 
vertices not containing the root, the number of edges with 
x, = 1 that have exactly one end-point in the set should 
be at least as large as xu for any vertex v in the set. More 
formally, let v(S) be the set of edges with exactly one end- 
point in S. Then for any set S { V - T }  and vertex v E S 

2, 2 2,. The LP-relaxation of this in- 
teger program is obtained by replacing the 0/1 constraint on 
the variables x,, xu by 0 5 x,, x, 5 1. Further, the con- 
straint x, < 1 implies that no optimum solution would have 
x, > 1 for any edge e E E and hence we can dispense with 
this constraint on 2, .  This gives us the following linearpro- 
gram 

we have Ceev(s) 

The dual of this linear program has a variable yU,s for all 
U ,  S : v E S C_ { V - T }  and a variable p ,  for vertex v and 

a variable p .  

maxi mi ze P .  - C , E V  Pu 
subject to 

CS:& Yu,s + P U  2 P (Vu E V )  
Cs:eev(s) Y ~ , S  5 ce W e  E E )  

pu 2 0 (Vu E V )  
yu,s 2 0 ( V v , S : v E S C I { V - T } )  

Consider an optimum solution to the dual linear program. 
For vertex v E V we define the potential of v as au = 
CS:,ES y , , ~ .  Let a be the k th  smallest potential. 

Claim 2.1 p has a value between the k th  and the ( k  + l)th 
smallest potentials. The optimum value of the dual program 
is the sum of the k smallest potentials. 

Proof: First note that if a, 2 p then p ,  = 0 else p, = 
p -  a,. Now for contradiction assume that p is strictly larger 
than the ( I C  + l)th smallest potential. Then at least k + 1 ver- 
tices have a positive value of p,. Decreasing p by a small 
amount t allows us to decrease every positive p ,  by t. This 
increases the objective function value by at least E > 0 con- 
tradicting our assumption that the solution is optimal. On 
the other hand if p is strictly smaller than the leth smallest 
potential then for at most k - 1 vertices p - a,  2 0; for the 
others p - a, < 0. We increase p by a sufficiently small 
amount t so that the only p,  values we have to modify cor- 
respond to the vertices for which p - a,  > 0. Since these 
are at most k - 1 vertices whose p ,  value has to be increased 
by E each, the net increase in the objective function value is 
at least t > 0. Thus p lies between the k th  and the ( I C  + l)th 
smallest potentials. 

Only the vertices with the k smallest potentials have a 
positive value for pu . Since for these vertices a,  = p - p, , 
the value of the objective function is the sum of the k small- 
est potentials. 

The function Q : V + R+ which gives the potentials of 
the vertices was defined as a,  = Cs:ves yu,s where yV,s 
is an assignment of non-negative values to pairs (U, S ) ,  v E 
S 2 { V - T }  such that for every edge e ,  Cecv(s) y,,~ 5 

Definition 2.1 An assignment of potentials to vertices, x : 
V + R+, is feasible ifthere exists an assignment of non- 
negative values topairs ( v ,  s), w E S s { V - r }  such that 
for  any edge e,  CeEo(s, yu,s 5 c, and for any vertex U ,  

Ce . 

44 5 CS:VES YV,S* 

The dual program can now be interpreted as finding a feasi- 
ble assignment of potentials to vertices such that the sum of 
the k smallest potentials is maximized. 

The condition that a potential function should satisfy to 
be feasible is somewhat unwieldy. Consider instead the fol- 
lowing condition for feasibility. 
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Definition 2.2 A potential assignment is feasible ifany tree 
rooted at r has cost at least as large as the sum of thepoten- 
tials of the vertices it spans. 

It is immediate that in any potential assignment with the 
above property the sum of the k smallest potentials is a lower 
bound on the cost of the minimum k-tree rooted at r. How- 
ever it is NP-complete to determine if a given assignment 
of potentials is infeasible under this new definition. On the 
other hand checking for the infeasibility of a potential as- 
signment under the older definition is easy and the older def- 
inition can in fact be viewed as a “fractional” relaxation of 
the new definition and hence the following claim. 

Claim 2.2 If T : V + R+ is a feasible potential assign- 
ment rinder the older dejnition then it is also feasible under 
the new dejinition. 

Note that the converse to the above claim is not true since 
we can have an infeasible assignment of potentials to ver- 
tices such that any tree rooted at r has cost at least as large 
as the sum of the potentials of the vertices it spans. Hence- 
forth we work with the new definition of feasibility of a po- 
tential assignment and use the sum of the k lowest potentials 
in such a feasible potential assignment as a lower bound on 
the optimum value. 

3. The Basic Algorithm 

The algorithm described in this section is the same as 
in [4] and [8]; we present it only for the sake of complete- 
ness. Each subset of vertices not containing the root, S c 
V, r S ,  has a variable ys associated with it; ys is ini- 
tially zero for all subsets S.  Our assignment of values to 
these variables would be such that they form a packing ie. 
Ve E E ,  xS:eE.p s, ys 5 c, .  An edge is tight if the above 
inequality is satdied as an equality for that edge. 

At any step in the algorithm the vertices are partitioned 
into a collection of active and inactive components each of 
which has a non-negative potential associated with it. A 
component is active if and only if it has a positive poten- 
tial and does not contain the root. To begin with, every ver- 
tex besides the root is assigned a potential p > 0. Thus at 
the first step all vertices form active components. We raise 
the variables corresponding to the active components uni- 
formly, s i m u l t a n e o u s l y  d e c r e a s i n g  t h e i r  p o t e n t i a l s  t i l l  either 

1. an edge e = ( U ,  U) goes tight’. The two components 
containing vertices U and w are merged into one. This 
new component is assigned a potential equal to the 
sum of the residual potentials of the merged compo- 
nents. If this new component contains the root it is 
made inactive. 

If many edges go tight simultaneously then we consider them in lexi- 
cographic order. 

2. the potential of a component reduces to zero. The 
component is made inactive. 

The process halts when all components are inactive. 

above description. 
The following observations follow immediately from the 

The component containing the root is always inactive 
and this is the only inactive component with a non- 
zero potential; all other inactive components have 
zero potential. 

At any point of the algorithm the tight edges form a 
forest the trees of which define the components at that 
stage. 

Delete Phase. Let Tp be the tree of tight edges spanning 
the final component containing the root; the subscript p de- 
notes the fact that this component and the tree spanning it 
were obtained when every vertex was assigned an initial po- 
tential p .  Viewing Tp as a tree rooted at r we associate with 
every edge e E Tp the subtree of Tp rooted at the endpoint 
of e farther from the root. We now delete from Tp all those 
edges whose associated subtree formed an inactive compo- 
nent at some point in the algorithm. Note that when an edge 
e is deleted the subtrees associated with the edges on the path 
from e to the root get modified. Let Tp C Tp be the residual 
tree ie. the part of Tp containing the root. 

Let x p  denote the assignment which gives every vertex 
besides the root a potential p .  T~ is not necessarily feasible 
and the following lemma gives a sufficient condition for the 
feasibility of rP. 

Lemma 3.1 An assignment T,  of potentials to the vertices 
is feasible ifthe root component has Zero potential when the 
above algorithm is run with every vertex having an initial 
potential given by T. 

Proof Omitted 
We now show how to reduce the potentials on the vertices 

to obtain a feasible potential assignment f f p  while ensuring 
that the behavior of the above algorithm when the initial as- 
signment of potentials is given by i kp  is exactly the same as 
when all vertices have an initial potential p. 

Note that the only vertices whose potential can be de- 
creased are those for which every component containing the 
vertex has non-zero residual potential. We decrease the po- 
tential of all these vertices uniformly till some component, 
which earlier had a non-zero potential, has a zero potential; 
the potential of the vertices in this component cannot be de- 
creased further. We continue in this manner till there is no 
vertex left whose potential can be decreased further; f f p  de- 
notes this final potential assignment. 

From our procedure for decreasing potentials it follows 
that the behavior of the algorithm on ?rp is the same as that 
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on np. Further, the maximum potential of a vertex in the as- 
signment .irp is p and the vertices not in T p  have this poten- 
tial. 

Lemma 3.2 The potential assignment .irp is feasible. 

Proof We show that the potential on Tp is zero; this by 
Lemma 3.1 implies that F p  is feasible. For contradiction as- 
sume that Tp had positive potential. Then one of the two 
components which merged to form Tp also has positive po- 
tential. Repeating the argument on this component we fi- 
nally obtain a vertex such that every component that this ver- 
tex belongs to has positive potential. Therefore the potential 
of this vertex can be reduced, contradicting our assumption 
on kp .  H 

Theorem 3.3 

cost(Tp) 5 2 . Fp(v) 
U € T p  

Running the above two procedures gives us a feasib!e po- 
tential assignment, F p ,  and a tree T p  such that cost(Tp) 5 
2 . CUE?, 7ip ( w ) .  Further, the potential of any vertex under 

the assignment ifp is no more than p. 

4. A 5-approximation Algorithm 

Let q be the largest value for which lTql 5 k ;  thus 

T = k l  5 k < T,SE = k2 .  The tree T ,  spans only 
k1 vertices and hence we need to pick an additional k - k1 

vertices. Let X = Tq+e - T, be the set of vertices that 
are not in T ,  but are there in ?q+E. Clearly 1x1 2 k2 - k l  
and we shall pick the additional vertices from this set. This 
we do as follows. We first short-circuit the tree T,fe into a 
cycle that has cost at most 2cost(T,+,) and includes all the 
vertices of X .  We then pick the least cost segment of k - kl 
vertices from the cycle; the cost of this segment is no more 
than ( k  - k l ) / ( k 2  - k ~ )  times the cost of the cycle. This 
yields us two connected components that span k vertices in 
all and these can be joined by picking the cheapest edge be- 
tween them. Also note that the tree Tq+E is a solution since 
it spans k2 > IC vertices. 

We have thus obtained two different solutions; the cost of 
the first solution can be bounded by 

I *,I 1 -  I 

and that of the second by cost(?',+,). The sum of the IC low- 
est potentials in the two feasible potential assignments +, 

and i?,tt provide lower bounds on the cost of the minimum 
k-tree and hence 

OPT 2 ?,(U) + q . ( k - k 1 )  

OPT 2 
V C T ,  

U E T q + t  

+ q + t ( w )  - ( q  + 6 )  . (k2  - k l )  

Since cost(?,) 5 2CUET, +,(U) and cost(?,+,) 5 
2 CUtTq+e +q+e (U) we have 

cost(?,) 5 2(OPT - ( k  - k l )  . q )  

cost(Fq+,) 5 2(OPT + ( k z  - k )  ( 4  + E ) )  

It is easily checked that one of the two solutions has cost no 
more than 5 .  OPT. 

5. A 3-approximation Algorithm 

One of the shortcomings of the 5-approximation algo- 
rithm is that the ( k  - I C l )  vertices of X are picked at a very 
high cost. We did not consider thedistributionof the vertices 
of X in the tree ? , + E ;  such an argument could perhaps give 
us a better way for picking the additional subset of vertices. 
We now present an algorithm that achieves an approxima- 
tion guarantee of 3. The algorithm proceeds by first finding 
two trees T- and T+ such that T -  < k and T+ 2 k .  
Additionaly these trees have a very similar structure. We 
then give a procedure for picking a subset of the vertices that 
are in ?+ but not in T- so that together with the vertices of 
T -  this forms a set of k vertices. 

I -  I I ^  I 

5.1. Finding similar trees 

Event points are values of the initial potential at which 
the tree returned by the first phase of the algorithm changes. 
Let p+, p-,  be potentials that are infinitesimally larger and 
smaller than p respectively. Thus p is an event point if 
Tp- # Tp+. Let p1, p2,  . . . p i , .  . . be the event points. Note 
that the tree returned by our algorithm changes only at the 
event points, between event points when the potential varies, 
the trees remain the same ie., Tp,-l+ = Tp,-. However the 
tree T p  which is obtained from Tp by deleting subtrees that 
correspond to inactive components might change at poten- 
tial values that are between event points, ie., Tp,-l+ might 
be different from TP,- .  

Let i be such that l ? p , - l +  I < IC and IFpz+ I 1 k. Then 

either lTp,-l+l < k'and 

l f ' p z + l  2 k .  In the former case define q to be that value 
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of potential between and pi such that T,- < k and 
T,+ 2 k while in the latter case define q to be the potential 
pi. It follows from our choice of the potential q that T,- < 
k and Tq+ 2 k .  The following claim relates the structure of 
trees T,- and l,+. 

Claim 5.1 Let S be a set of vertices such that ys > 0 when 
we run our algorithm with an initial potential q.  Then the 
vertices of S occur contiguously in the trees T,- und T,+. 

Proof Since the initial potentials q -  and q+ are only in- 
finitesimally different from q any set which has a positive 
potential when the algorithm is run with an initial potential 
q would continue to have a positive potential when the ini- 
tial potentials are q -  or q+ .  Hence the vertices of this set 
would occur contiguously in the trees T,- and Tq+. 

We now show a sequence of steps by which tree T,+ can 
be obtained from T,- . Let S be a set of vertices such that 
ys > 0 when we run our algorithm with an initial poten- 
tial q .  Since the vertices of S occur contiguously in trees 
T,_ and T,+ we can replace the edges induced by S in Tq- 
with the edges that this set induces in T,+ without increas- 
ing the cost of the tree. We perform these modifications on 
the active sets S in the order that they were created. This 
gives us a sequence of trees beginning with T,- and end- 

ing with T,+. Since T,- < k and T,+ > k there exist 

two trees T- and T+ in the sequence such that T -  < k 

and T+ 2 k .  Furthermore by our procedure for swap- 
ping edges it follows that there exists an active set S formed 
from components SI, Sz, . . . such that the trees T- , T+ dif- 
fer only in the edges between these components. We can fur- 
ther narrow the difference between the trees T- and Tt by 
replacing the edges that run between these components in 
the tree T- with the edges in T+ one at a time. We remove 
an edge of T- and add that edge of T+ that coonects the two 
components formed. Redefine T- , T+ to be the trees differ- 
ing in an edge and satisfying T -  < k ,  T+ > k .  Note 
that although trees T- , T+ differ in only one edge, the trees 
T-  and T+ could be quite different. 

Let e -  E T-, e+ E T+ be the pair of edges that trees 
T- , T+ differ in and let SI, Sz be the two components of S 
between which these edges run with SI being the component 
closer to the root. 

I -  I I -  I 
I -  I 

I -  I 

I ^ /  1 - 1  

5.2. Picking suitable vertices 
A A  

Let k l ,  IC2 be the number of vertices in trees T - ,  Tt re- 
spectively. Since IC2 > k > IC1, tree T+ has some vertices 
that do not belong to the tree T- ; wecall these vertices new 
vertices. The remaining vertices in T+ (which also belong 
to the tree T-) are the old vertices. Let s be the number of 

new vertices; clearly, s 2 IC2 - kl .  Since the new vertices 
do not belong to T- they have a potential q .  

Lemma 5.1 In the tree T+ all new vertices occur contigu- 
ously while the old vertices form at most two contiguous sets. 

Proof Omitted 
Let X I ,  X z  be the two contiguous sets of old vertices; the 

set XI contains the root while X 2  is possibly empty. All new 
vertices belong to the set S.  We shall pick a set Yl U Yz of 
k-kz+s new vertices which together with the ka-s old ver- 
tices, X I  U X Z ,  in T+ forms the set, 2 = XI U X Z  U YI U Y2, 

of k vertices. The new vertices we pick are such that Yl oc- 
curs contiguously with X I  and Yz with X z  in the tree T+. 
Thus the edges of T+ induce two trees on the vertices of 
2; let TI be the tree induced over X1 U Y1 and TZ the tree 
induced over X2 U Yz. We shall later argue that the total 
cost of these two trees is at most twice the sum of the po- 
tentials of the vertices in 2 (Lemma 5.3). Since all new ver- 
tices have potential q (the maximum potential) and the old 
vertices have potential at most q ,  the vertices in 2 are the k 
vertices with the lowest potentials. Hence the sum of their 
potentials is a lower bound on the optimum and so the to- 
tal cost of trees TI and T2 is at most twice the optimum. By 
picking the least weight edge between the sets X I  U Y1 and 
Xa U Yz we get a tree with IC vertices and of cost no more 
than thrice the optimum. 

The vertices of S1 (resp. Sz) are contiguous with the ver- 
tices of XI (resp. X Z ) .  Only if there are not enough new 
vertices in SI do we pick some from Sz. Thus either it is 
the case that Yz = I#I or Y1 is the set of all new vertices in 
5’1. We henceforth assume that we are in the latter case since 
the other case is similar. 

Let T be the subtree of p+  induced over the vertices of 
X Z  U SZ and W be the set Sz. We are therefore trying to 
pick some number of new vertices from the set W ;  we as- 
sume that we have already picked all the old vertices in T .  
At any step in the following algorithm we have a tree T and 
a contiguous subset W of its vertices; W can be viewed as 
a window of T .  Only those new vertices that are in this win- 
dow have not been picked yet; all other vertices of T have 
been picked already. Our aim is to pick a certain number of 
new vertices from the window. One invariant that we shall 
maintain is that all the picked vertices occur contiguously in 
T .  At each step we shall narrow the window W till we reach 
a stage when the number of new vertices in W is exactly the 
number we need. 

By running our algorithm on the original graph we ob- 
tained certain active and inactive components at each itera- 
tion and also assigned dual variables to sets. At a particular 
step of the following procedure, we consider the restriction 
of these components to the vertices of T ;  these restrictions 
define the components in this step. The dual variable on a 
set, S C T ,  is the sum of the dual variables on the sets that 
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Figure 1. The left tree is the tree T-/T+. On the right, the white part together with the part shaded gray 
(resp. black) is the tree ?+ (resp. ?-). 

when restricted to the vertices of T yield the set S.  We shall 
always maintain that the window, W ,  is a component. Note 
that this is true for the window defined for the first step. 

Definition51 A component C pays fo r  itself ;f 
c s c c  YS 5 C U E C  %(vu). 

The third invariant we maintain is: the components that do 
notpay for  themselves are supersets of the window W .  Note 
that at the first step all components pay for themselves. 

Consider the components at an iteration; the edges of T 
form a tree over these components. A component is an in- 
active leaf if in some iteration it is inactive and a leaf of this 
tree. The final invariant we maintain is  that no inactive leaf 
is disjoint from W or from any other inactive l ea .  At the 
first step let v be the vertex of T at which the edge e+ is in- 
cident. Then every inactive leaf contains wAor else we would 
have deleted this component in obtaining T+ form T+ . Fur- 
ther since v E W the invariant holds. We are now ready to 
describe the actual algorithm for input (W, T ) .  

We first consider the case when T has an inactive leaf, say 
C, that is a proper subset of W .  If W - C has enough new 
vertices then we move to the next step with arguments ( W - 
C, T - C) Else we move to the next step with arguments 

If we are not in the above case then no proper subset of 
W is an inactive leaf. Consider the two components form- 
ing W .  If W has only new vertices then only one of these 
components can be contiguous with vertices in T - W (this 
follows from the invariant that the picked vertices are con- 
tiguous in tree T).  We label this component C1 and the other 

(C,  TI. 

component Cz. The other case arises when W has both old 
and new vertices. From the contiguity of old and new ver- 
tices it follows that either one of the components forming W 
has only old vertices or the other component has only new 
vertices. We label the first component C1 and the other C,. 
Having suitably labeled the components we check to see if 
C1 has enough new vertices. If so we go on to the next step 
with arguments (Cl, T - Cz). If CI does not have enough 
new vertices then we move to the next step with arguments 
(C2, TI. 
Lemma 5.2 The above algorithm maintains the four invari- 
ants mentioned earlier 

Proof We consider the four invariants below. 

1. From the way we labelled the components C1, Ca and 
the order of picking them it follows that the picked 
vertices are contiguous in the tree T .  In the other case 
recall that we first pick vertices from the set W - C 
and then from C. Since C is an inactive leaf of the 
tree T ,  the set W - C is contiguous with T - W and 
hence the picked set of vertices is always contiguous 
in T .  However, it could be the case that T - W is 
empty and C contains all old vertices of the tree T.  
In such a setting picking vertices from W - C would 
not give us a contiguous set of picked vertices. But 
all old vertices of T cannot belong to an inactive leaf 
of T because then they would never have been part of 
T -  and hence such a situation would never arise. 

2. When the window is narrowed to W - C the tree is 
also redefined to be T - C so that W - C is the restric- 
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tion of the component W to this tree. In all the other 
cases the new window is a component in  the previous 
step and hence also a component in the next step. 

3. Suppose that the components that do not pay for them- 
selves at this step are restrictions of the components 
that did not pay for themselves at the previous step. 
Since the new window is only a subset of the previous 
window the invariant continues to hold. The only case 
when we might be creating a component that does not 
pay for itself is when we redefine the tree to T - C2 
and the window to C1. In this setting the component 
C1 may not be paying for itself anymore. But this 
component is also the new window and hence the in- 
variant is still maintained. 

4. When we modify the tree some components might be- 
come inactive leaves in the new tree. This happens 
when we modify the tree to T - C or to T - CZ. Let 
w be the vertex in W - C (resp. C1) at which the 
unique edge from C (resp. CZ) is incident. Then any 
newly created inactive leaf has to include this vertex. 
Further v is contained in the window W - C (resp. 
Cl) and hence none of these inactive leaves are dis- 
joint from the window or from each other. Similarly 
one can argue that these newly created inactive leaves 
are not disjoint from the previously existing inactive 
leaves. 

The other setting when this invariant might be vio- 
lated is when we redefine the window. Since the new 
window is only a subset of the previous one, inac- 
tive leaves that were supersets of the previous win- 
dow continue to be so for the current window as well. 
We now consider the possibility that an inactive leaf 
which was a subset of the previous window is disjoint 
from the current window. This cannot happen when 
we define the window to be C because then C and this 
inactive leaf would be disjoint violating the invariant 
that no two inactive leaves are disjoint. Neither can 
this happen when we define the window to be Cz be- 
cause then a subset of C1 would be an inactive leaf 
violating our assumption that no subset of W was an 
inactive leaf. 

Lemma 5.3 The total cost of trees TI and Tz is no more 
than twice the sum of the potentials of the vertices in Z.  

Proof The proof of this lemma is similar to that of Theo- 
rem 3.3 but now we need to argue separately for the itera- 
tions before and after SI, 5’2 merged to form the component 
S. 

We first argue about the iterations before component 5’ 
was formed. Consider the final window W and the tree T 

in the above procedure. From the invariants that we main- 
tained it follows that at any iteration of the basic algorithm 
the only active component that could not pay for its growth 
was the one containing W .  At any iteration the tree TI had 
at most two inactive leaves - the root component and the 
component containing the end-point of e+ .  On the other 
hand tree T2 = T had at most one inactive leaf at any it- 
eration; this follows from our invariant that no two inactive 
leaves are disjoint. Furthermore, since this inactive leaf is 
not disjoint from W ,  we could not have both an active com- 
ponent that cannot pay for its growth and an inactive leaf of 
T2 in the same iteration. Thus in an iteration, TI U T2 ei- 
ther has at most three inactive leaves or it has at most two 
inactive leaves and an active component that cannot pay for 
its growth. This, together with the fact that in these itera- 
tions the edges of TI U T2 induce a forest of two trees on the 
components allows us to argue that the contribution of each 
iteration to cost(T1 U Tz) is at most twice the total decrease 
in potentials of the components in that iteration. 

In the iterations after S is formed the edges of TI U TZ 
induce only one tree over the components and this tree has 
atmost one inactive leaf - the root component. We however 
need to argue that when S is formed its potential when we 
restrict ourselves to vertices of 2 is the same as its original 
potential obtained by considering all vertices of the graph. 
This is so, because 2 includes all the vertices of p... . 

6. A Tight example 

The graph in Figure 2 has a root T and p clusters of k/2 - 1 
vertices each. Two vertices in the same cluster are zero dis- 
tance apart while the distance between the clusters and the 
root is as shown in the figure. Assuming that d 2 1, the 
minimum k-tree would pick vertices from three clusters and 
hence would have cost d + 2. The optimum fractional solu- 
tion on the other hand would assign each vertex other than 
the root a value ( k  - l ) / (p (k /2  - 1)) and the root a value 
1. The edges on the circumference would then have a value 
( I C  - l)/(p(k - 2)) and one of the radial edges would have a 
value ( k  - l ) / (p (k /2  - 1)) .  Thus the cost of the fractional 
solutionis ( k -  l ) / (k-Z)  +d(k-  l ) / (p(k /Z-  1)) which for 
very large p is roughly ( k  - 1) / ( k  - 2). Note that this is inde- 
pendent of d so that for large d the gap between the optimum 
fractional and integral solutions could be unbounded. How- 
ever, since d is also a lower bound on the cost of the mini- 
mum k-tree, the lower bound we have for this instance is re- 
ally max{d, ( I C  - I ) / ( k  - 2)}. Settingd to ( k  - l ) / ( k  - 2) 
then gives us a gap of 1 + 2 ( l  - l / ( k  - 1)) between the 
lower bound and the cost of the minimum k-tree. 

308 



Figure2. The example that establishes a gap of 
1+2(1-  i/(k- I)) between the lower bound and 
the optimum. 

7. On the minimum tour visiting Ic-vertices 

Given an undirected graph G = (V, E )  with edge costs 
c : E -+ R+ that satisfy traingle inequality, we now con- 
sider the probelm of finding the minimum cost simple cy- 
cle of that includes some k vertices, we call such a cycle a 
k-tour. As in the case of the spanning tree we consider the 
rooted version of this problem where we are only interested 
in cycles that include a specified root vertex r .  We show how 
the techniques of the previous sections can be used to obtain 
a 3-approximation for this problem. 

Using the same argument as for the k-tree, we can assume 
that the farthest vertex from the root is included in the mini- 
mum k-tour. This implies that twice the distance of the far- 
thest vertex from the root is a lower bound on the optimum 
value. The feasible potential assignments, i?p, that we con- 
structed satisfied the property that for any rooted tree T, the 
cost of T was at least as large as the sum of the potentials of 
the vertices in T .  This allowed us to argue that the sum of the 
k lowest potentials in any feasible assignment was a lower 
bound on the cost of the minimum k-tree. Interestingly our 
feasible potential assignments also astisfy the property that 
for any tour C,  the cost of C is at least twice the sum of the 
potentials of the vertices in C. Therefore, twice the sum of 
the k lowest potentials in any feasible assignment is a lower 
bound on the cost of the minimum k-tour. 

Recall that the k-tree returned by our algorithm has cost 
bounded by twice the sum of the k lowest potentials in a fea- 
sible potential assignment plus the distance of the farthest 
vertex from the root. This implies that this k-tree has cost 
at most 3/2 times the cost of the minimum k-tour. By dupli- 
cating the edges of the k-tree and shortcircuiting an eulerian 
walk of this “doubled tree” we obtain a k-tour of cost at most 
twice the cost of the k-tree and hence within thrice that of the 
minimum k-tour. 
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