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Abstract

We present a combinatorial proof that the wheel graph Wn has L2n − 2
spanning trees, where Ln is the nth Lucas number, and that the number of
spanning trees of a related graph is a Fibonacci number. Our proofs avoid the
use of induction, determinants, or the matrix tree theorem.

1 Introduction

Let G be a graph and let τ(G) be the number of spanning trees of G. In
this paper we will present combinatorial proofs that determine τ(G) for the
wheel graph and a related auxiliary graph. Two simple bijections will provide
a direct explanation as to why the number of spanning trees for these graphs
are Fibonacci and Lucas numbers.

Definition 1.1. For n ≥ 1, The wheel graph Wn has n + 1 vertices, consisting
of a cycle of n outer vertices, labelled w1, . . . , wn, and a “hub” center vertex,
labelled w0, that is adjacent to all the n outer vertices .

For example, W8 is presented in Figure 1. The Lucas numbers are recursively
defined by L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3.

Theorem 1.2. For n ≥ 1, τ(Wn) = L2n − 2.

This result was first proved by Sedlacek in [5] and later by Myers in [3].
As part of Myers’ proof, he employs an auxiliary graph, denoted by An, that
is similar to the wheel graph and presented in Figure 2. For n ≥ 2, An has
n+1 vertices and 2n+1 edges, consisting of a path of n outer vertices, labelled
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Figure 1: The wheel graph W8.

a1, . . . , an, and a hub vertex a0 that is adjacent to all n outer vertices. In
addition, a0 has an extra edge connecting to a1 and an extra edge connecting
to an. We label the two edges from a0 to a1 as red and blue, and do the same
for the edges from a0 to an. Let fn denote the nth Fibonacci number with
initial conditions f1 = 1, and f2 = 2.

Theorem 1.3. For n ≥ 2, τ(An) = f2n+1.

Figure 2: The auxiliary graph A8.

One way to determine τ(An), as shown by Koshy [2], is to apply the matrix
tree theorem [6], first proved by Kirchhoff, by computing the determinant of
the n-by-n tridiagonal matrix

An =

∣∣∣∣∣∣∣∣
3 −1 0 . . . 0
−1 3 −1 . . . 0
0 −1 3 . . . 0

... −1
0 0 0 . . . −1 3

∣∣∣∣∣∣∣∣ .
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Expanding along the first row, and proceeding inductively, it follows that
τ(An) = |An| = 3|An−1| − |An−2| = 3f2n−1 − f2n−3 = f2n+1.

The matrix tree theorem also indicates that τ(Wn) equals the determinant
of the following matrix n-by-n circulant matrix

Bn =

∣∣∣∣∣∣∣∣
3 −1 0 . . . −1
−1 3 −1 . . . 0
0 −1 3 . . . 0

... −1
−1 0 0 . . . −1 3

∣∣∣∣∣∣∣∣ .

Expanding |Bn| along its first row, we obtain |An| as one of its subdeter-
minants. Proceeding by induction and with a bit more computation (see [2]),
τ(Wn) = L2n − 2 can then be obtained. In the next two sections, we give
combinatorial proofs of Theorems 1.2 and 1.3 that are much more direct.

2 Combinatorial Proof of τ (Wn) = L2n − 2

The Lucas number Ln counts the ways to tile a bracelet of length n and
width 1 using 1 × 1 squares and 1 × 2 dominoes [1]. Equivalently, Ln is the
number of matchings in the cycle graph Cn. Observe that even cycle graphs
C2n have exactly two perfect matchings and thus L2n − 2 imperfect matchings,
such as the one in Figure 3.

Figure 3: An imperfect matching of C8.

Given an imperfect matching M (a subgraph of C2n where every vertex ci

has degree 0 or 1), we construct a spanning tree TM of Wn as follows:

1. For 1 ≤ i ≤ n, an edge exists from w0 to wi if and only if c2i−1 has degree
0 in M .
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2. For 1 ≤ i ≤ n, an edge exists from wi to wi+1 (where wn+1 is identified
with w1) if and only if c2i has degree 1 in M .

The bijection is illustrated in Figure 4.

Figure 4: An example of the bijection for n = 4.

To see that TM is a spanning tree of Wn, suppose that M has x vertices of
degree 1 and y vertices of degree 0; thus x + y = 2n. Observe that vertices of
degree 1 come in adjacent pairs and that if vj has degree 0, then the next vertex
of degree 0, clockwise from vj , must be vk, where k and j have opposite parity.
Thus, TM will use exactly x/2 + y/2 = n edges of Wn. Since Wn has n + 1
vertices, we need only show that TM has no cycles. Suppose, to the contrary,
that TM has a cycle C. Then C, denoted by w0wiwi+1 · · ·wkw0, must use two
edges adjacent to w0 (otherwise M would be a perfect matching). Thus, c2i−1

and c2k−1 have degree 0 in M and hence some vertex c2j must also have degree
0 where c2j is strictly between c2i−1 and c2k−1 on C. But since c2j has degree
0, there is no edge in TM from wj to wj+1, a contradiction. Hence no cycle C
exists on TM and so TM is a tree.

The process is reversible since a spanning tree T of Wn completely deter-
mines the degree dk ∈ {0, 1} of each vertex ck in a subgraph of C2n. Since w0

is not an isolated vertex of T , not all dk are equal to 1. We show that C2n has
a unique matching that satisfies this degree sequence by showing that every
string of 1s has even length; i.e., if dk = 0, dk+1 = dk+2 = · · · = dk+j = 1, and
dk+j+1 = 0, then j must be even. For if k = 2i − 1 is odd and j is odd then
the tree T would contain a cycle w0wiwi+1 · · ·wi+(j+1)/2w0. If k = 2i is even
and j is odd, then T is not connected since the path wi+1wi+2 · · ·wi+(j+1)/2 is
disconnected from the rest of T .
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3 Combinatorial Proof of τ (An) = f2n+1

The Fibonacci number fn counts the ways to tile a 1 × n rectangle using
1 × 1 squares and 1 × 2 dominoes [1]. Alternatively, fn counts the matchings
of Pn, the path graph on n vertices, whose vertices are consecutively denoted
p1, . . . , pn. Let M be an arbitrary matching of P2n+1. We construct a spanning
tree TM of An as follows:

1. For 1 ≤ i ≤ n, TM has an edge from from a0 to ai if and only if vertex p2i

has degree 0 in M . (For i = 1 or n, then this refers to the red edge.)

2. For 0 ≤ i ≤ n− 1, Tm has an edge from ai to ai+1 if and only if p2i+1 has
degree 1 in M . (For i = 0, this refers to the blue edge.)

3. TM has a blue edge from a0 to an if and only if p2n+1 has degree 1 in M .

Notice that these rules make it impossible for TM to contain two edges from
a0 to a1 or two edges from a0 to an. The bijection is illustrated in Figure 5

Figure 5: An example of the bijection for n = 4.

Like before, we prove that TM is a spanning tree of An. Suppose that M has
a and b vertices of degree 0 and 1 respectively; thus a + b = 2n + 1. Reasoning
as before, M has b/2 odd vertices of degree 1 and (a − 1)/2 even vertices of
degree 0. Thus, TM has (a − 1)/2 + b/2 = n edges. Suppose for the sake of
contradiction, that TM has a cycle C. Then C, denoted by a0aiai+1 · · · aka0,
must use two edges adjacent to a0. Thus p2i and p2k have degree 0 in M and
hence some vertex p2j+1 must also have degree 0 where p2j+1 is strictly between
p2i and p2k on C. But since p2j+1 has degree 0, there is no edge in TM from aj

to aj+1, a contradiction. Hence no cycle C exists on TM and so TM is a tree.
The process is also reversible since a spanning tree T of An completely

determines the degree dk ∈ {0, 1} of each vertex pk in a subgraph of P2n+1.
Again, not all dk are equal to 1, since T would contain the cycle a0a1 · · · ana0.
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To prove that P2n+1 has a unique matching that satisfies this degree sequence,
suppose that for some k, j, dk = 0, dk+1 = dk+2 = · · · = dk+j = 1, and
dk+j+1 = 0. As before, if k = 2i is even and j is odd, then the tree T contains
the cycle a0aiai+1 · · · ai+(j+1)/2a0. If k = 2i− 1 is odd and j is odd, then T is
not connected since the path aiai+1 · · · ai+(j−1)/2 is disconnected from the rest
of T . Thus j must be even, and the matching generating T is unique.
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