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First told by Fibonacci himself, the story that often accompanies one’s

initial encounter with the sequence 1,1,2,3,5,8,... describes the size of a

population of rabbits. The original question concerns the number of pairs of

rabbits there are in a population; for simplicity we consider individual rabbits

rather than pairs. In general, a rabbit is born in one season, grows up in the

next, and in each successive season gives birth to one baby rabbit. Here, the

sequence {fn} that enumerates the number of births in each season is given

by fn+2 = fn+1 + fn for n ≥ 1, with f1 = f2 = 1, which coincides precisely

with the Fibonacci sequence. Also, recall that the asymptotic exponential

growth rate of the Fibonacci numbers equals the golden ratio, 1+
√

5
2

. Further

discussion of this golden ratio can be found in [1]. In addition, there is

a very large amount of literature on the Fibonacci sequence, including the

Fibonacci Quarterly, a journal entirely devoted to the Fibonacci sequence

and its extensions.
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In this article, we consider similar recurrences and examine their asymp-

totic properties. One way this has been previously studied is by defining a

new sequence, Gn+r = α1Gn+r−1+α2Gn+r−2+· · ·+αrGn for n ≥ 1, and giving

a set of initial conditions {G1, G2, ..., Gr}. Other modifications include a non-

deterministic version that allows for randomness in the values of the terms of

the sequence, while still having successive terms depend on the previous two:

one such recurrence is given by tn+2 = αn+2tn+1 + βn+2tn where {αn} and

{βn} are sequences of random variables distributed over some subset of the

real numbers. In the case when {αn} and {βn} are independent Rademachers

(symmetric Bernoullis), that is, each taking values ±1 with equal probabil-

ity, Divakar Viswanath showed that although the terms of {tn} are random,

asymptotically the sequence experiences exponential growth almost surely;

n
√
|tn| approaches a constant 1.1319... as n → ∞ [6]. Building from this re-

sult, Mark Embree and Lloyd Trefethen determined the asymptotic growth

rate when αn and βn take the form of other random variables [2]. In this

article, we determine the growth rates of other variations of the Fibonacci

sequence, specifically those we call the geometric and harmonic Fibonacci

sequences.
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The Geometric and Harmonic Fibonacci Sequences

There has been significant study of Fibonacci-like sequences that are linear,

that is, recurrence relations of the form given by {Gn} defined above. In

this paper, though, we will consider two non-linear Fibonacci recurrences.

First, note that we can view the Fibonacci sequence as a recurrence in which

each term is twice the arithmetic mean of the two previous terms. In this

light, we introduce the geometric Fibonacci sequence {gn} and the harmonic

Fibonacci sequence {hn}, in which each successive term is twice the geometric

or harmonic mean, respectively, of the previous two terms in the sequence.

That is, we define

gn+2 = 2
√

gn+1gn for n ≥ 1, with g1 = g2 = 1,

and

hn+2 = 4
1

hn+1
+ 1

hn

for n ≥ 1, with h1 = h2 = 1.

We motivate the study of the geometric and harmonic sequences by a de-

sire to examine properties associated with the triumvirate of the arithmetic,

geometric, and harmonic means.
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Term # Fibonacci Geometric Fibonacci Harmonic Fibonacci

1 1 1 = 20 1

2 1 1 = 20 1

3 2 2 = 21 2

4 3 2.828. . . = 23/2 2.666. . . = 8
3

5 5 4.756. . . = 29/4 4.571. . . = 32
7

6 8 7.336. . . = 223/8 6.736. . . =128
19

7 13 11.814. . . = 257/16 10.893. . . = 512
47

8 21 18.619. . . = 2135/32 16.650. . . = 2048
123

Table 1: Here are the first eight terms of each Fibonacci sequence.

Arithmetic-Geometric-Harmonic Mean Relations

The first historical reference to the arithmetic, geometric and harmonic

means is attributed to the school of Pythagoras, where it was applied to

both mathematics and music. Initially dubbed the subcontrary mean, the

harmonic mean acquired its current name because it relates to “the ‘geomet-

rical harmony’ of the cube, which has 12 edges, 8 vertices, and 6 faces, and

8 is the mean between 12 and 6 in the theory of harmonics” [4]. Today, the

harmonic mean has direct applications in such fields as physics, where it is
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used in circuits and in optics (through the well-known lens-makers’ formula).

We also know that the following hierarchy always holds: the arithmetic

mean of two non-negative numbers is always at least as great as their geo-

metric mean, which in turn is at least as great as the harmonic mean. That

is, given two numbers a and b, a+b
2
≥
√

ab ≥ 2
1
a
+ 1

b

.

As a result of the arithmetic-geometric-harmonic mean inequalities, the

terms of the corresponding sequences we defined satisfy the inequality fn ≥

gn ≥ hn for all n. Next, we will see that the asymptotic growth rates of

the Fibonacci sequence, along with those of our geometric and harmonic

variations of the sequence, exist and also satisfy this inequality.

Calculating the Growth Rates for the Geometric and

Harmonic Fibonacci Sequences

In order to solve the difference equations for {gn} and {hn}, we will proceed in

the same manner as solving a non-homogeneous differential equation. First,

we will define a characteristic equation for the recurrence from which we can

obtain a homogeneous solution. Then, using the roots of the characteristic

equation, we will apply the method of undetermined coefficients to obtain

a particular solution (if necessary), which when combined with the homoge-
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neous solution and the initial conditions yields a solution to the difference

equation.

As a first example, we will derive the growth rate for the Fibonacci se-

quence in this manner. Our characteristic equation of the recursive sequence

{fn} defined by fn+2 = fn+1 +fn, is x2−x−1 = 0. This has solutions of x =

1±√5
2

. So, our homogeneous solution is fn = c1

(
1+
√

5
2

)n

+ c2

(
1−√5

2

)n

. Using

our two initial conditions of the Fibonacci sequence, namely f1 = 1, f2 = 1,

we see that c1 = 1√
5

and c2 = −1√
5
. This gives a general form (Binet’s formula)

for the nth Fibonacci number as fn = (1+
√

5)n−(1−√5)n

2n
√

5
. Thus, we have an

asymptotic bound of 1+
√

5
2

, as desired.

Next, we consider our geometric Fibonacci sequence {gn} as defined above

and proceed to determine its growth rate (note, though that by inspection

it is not entirely clear that an asymptotic growth rate exists). A naive way

to guess what this rate is results from the following steps. If we assume

that this asymptotic growth rate exists, we can determine the limit of the

ratio of successive terms in the geometric mean recurrence directly from the

recurrence relations. Let Rg be the asymptotic growth rate, Rg=limn→∞
gn+1

gn
.

Next, we solve for Rg:

gn+2 = 2
√

gn+1gn
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⇒ (gn+2)
2 = 4gn+1gn

⇒ limn→∞
gn+2

2

gn+1
2 = 4 limn→∞

gn

gn+1

⇒ Rg
2 = 4 1

Rg

⇒ Rg = 41/3

From this calculation emerges the surprising result that the asymptotic growth

rate of our geometric Fibonacci sequence is likely to be the cube root of four.

To obtain this result in a more rigorous manner, we instead solve for a

closed-form expression; from this expression, the growth rate is shown to

exist and indeed equal 41/3. The most common method for solving this

form of recursive relation is by using generating functions; for example, the

asymptotic growth rate of the regular Fibonacci sequence, which interestingly

is the golden ratio 1+
√

5
2

= 1.6180... (c.f., [3]), can be found in this way.

Here we use a different technique–the one described above–that, in this case,

simplifies calculations. Recall that we have the following relation for our

geometric Fibonacci sequence: gn+2 = 2
√

gn+1gn. Squaring both sides, we

obtain (gn+2)
2 = 4gn+1gn. By making the substitution

bn = log(gn),

we obtain a nonhomogeneous linear recurrence, 2bn+2 = log 4 + bn+1 + bn,

whose solution is computed here, using a method which is analogous to that
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of solving a similar differential equation (such as f(x) = 17 + f ′(x) + f ′′(x)).

To begin, we identify the characteristic equation as q(x) = 2x2 − x − 1 =

(2x + 1)(x− 1), which has roots x = −1
2

and x = 1. Thus, the homogeneous

solution is bn = c1(−1
2
)n + c2(1)n. To obtain the particular solution, we will

apply the method of undetermined coefficients, that is, making an educated

guess for the form of f(n) in bn = f(n) log(4). We use the initial conditions

b4 and b5 from the recurrence to verify our guess that bn = An log(4). Then,

2An log(4)−A(n−1) log(4)−A(n−2) log(4) = log(4), so A = 1/3. Thus, bn =

n
3

log(4) + c1(−1
2
)n + c2(1)n. By substituting b4 and b5 as initial conditions,

we can solve for c1 and c2. Hence, we now construct and solve the following

system of equations:

b4 = 3
2
log(2) = 4

3
log(4) + 1

16
c1 + c2

b5 = 9
4
log(2) = 5

3
log(4)− 1

32
c1 + c2

Solving for c1 and c2 yields c1 = −4
9
log(4) and c2 = −5

9
log(4). So, the

solution to our recurrence relation is bn = log(4)(n
3
− 4

9
(−1

2
)n− 5

9
(1)n). Thus,

for n ≥ 1, we have the following closed-form expression for our geometric

Fibonacci sequence:

gn = exp(bn) =2( 2n
3
− 8

9
(− 1

2
)n− 10

9
).
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As predicted by the simple calculation performed above, the asymptotic

growth rate is indeed the cube root of four: Rgr = limn→∞(gn+1/gn) = 41/3 =

1.5874 . . .. Note that this rate of growth is close to that of the arithmetic

(that is, the usual) Fibonacci sequence which we noted above as being the

golden ratio, 1.6180..., but indeed less than the golden ratio, satisfying the

geometric mean ≤ arithmetic mean inequality described above. Of course,

however, just as we know that in the long-term, slight differences in interest

rates result in large differences in bank account balances, for the same rea-

son, the small difference in the growth rate with time results in quite large

differences between the terms of the regular Fibonacci sequence and those of

our geometric Fibonacci sequence.

Another way we can obtain this intriguing result is by examining the

terms of {gn}. Let us begin by writing a few terms of the sequence as

powers of 2: g4 = 23/2, g5 = 29/4, g6 = 223/8, g7 = 257/16. If we write gn =

2mn/2n−3
, we note that the terms in the numerator of the exponent (which

we denote {mn}), namely 3, 9, 23, 57,. . ., (for n = 4, 5, . . .) satisfy the

recurrence relation mn+2 = mn+1 +2mn +2n−1. We can solve this recurrence

relation in the same manner as that used to solve the recurrence of {gn}.

The characteristic equation of mn+2 −mn+1 − 2mn = 2n−1 is (x2 − x− 2) =
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(x − 2)(x + 1), with solutions of x = 2 and x = −1. So, our homogeneous

solution is mn = c1(2)n+c2(−1)n. To obtain the particular solution, we again

apply the method of undetermined coefficients. Suppose that mn = An(2)n.

Then 2n−3 = An(2)n − A(n− 1)2n−1 − 2A(n− 2)2n−2, so A = 1
12

. Thus, we

have mn = c1(2)n +c2(−1)n + n
12

(2)n. When we solve for c1 and c2, we obtain

c1 = − 5
36

and c2 = −1
9
, which gives the following closed-form expression for

n ≥ 4:

mn = − 5
36

(2)n +−1
9
(−1)n + n

12
(2)n.

When using the relation between gn and mn, namely that gn = 2mn/2n−3
, we

obtain the same expression for gn as the one we obtained with the previous

method.

Finally, we analyze our harmonic Fibonacci sequence {hn}, whose re-

currence relation we recall is given by hn+2 = 4
1

hn
+ 1

hn+1

. Again, it is not

intuitively clear what type of growth this sequence undergoes, but we find

that it too experiences exponential growth. By employing a heuristic proce-

dure similar to that of the classical Fibonacci derivation, here we determine

the limiting ratio Rh = limn→∞
hn+1

hn
. Rearranging the recurrence relation

yields hn+2hn+1 +hn+2hn = 4hnhn+1. Manipulating the harmonic expression

further yields hn+2

hn
+ hn+2

hn+1
= 4. Thus, R2

h + Rh = 4, and by the quadratic
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formula, we obtain roots −1±√17
2

. Finally, our growth rate is known to be

positive, so Rh = −1+
√

17
2

=1.5615....

Another way we can prove this is by the second method presented for the

calculation of the growth rate of the geometric fibonacci sequence. Notice

that each of terms of hn for n ≥ 4 are of the form 22n−5/jn, where j4 = 3, j5 =

7 and jn+2 = jn+1+4jn for n ≥ 6. We can solve this recurrence relation by the

methods described above, which gives the following closed-form expression

for n ≥ 4:

jn = 51+5
√

17
1088

(
1+
√

17
2

)n

+ 51−5
√

17
1088

(
1−√17

2

)n

.

When using the relation between hn and jn, namely that hn = 22n−5

jn
, we

obtain an explicit expression for hn. This gives us an asymptotic growth rate

of 4
(1+

√
17)/2

= −1+
√

17
2

, as desired.

Thus, we have constructed the arithmetic-geometric-harmonic inequality

for the growth rates:

1+
√

5
2

≥ 4
1
3 ≥ −1+

√
17

2
,

with corresponding decimal approximations:

1.6180 . . . ≥ 1.5874 . . . ≥ 1.5615 . . .,
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where the three terms correspond to the asymptotic growth rates we deter-

mined for the arithmetic (i.e., the usual), geometric, and harmonic Fibonacci

sequences.

Possible Appendix: Integer-Valued Versions of the Ge-

ometric and Harmonic Fibonacci Sequences

It is interesting to note that although the growth rate of the Fibonacci se-

quence is an irrational number, namely the golden ratio, each term of the

sequence is an integer. Note, however, that neither the geometric nor har-

monic Fibonacci sequence is a sequence of integers. So we now define se-

quences whose recurrences are given by rounding up to the nearest integer

twice the geometric or harmonic mean of the previous two terms; that is, con-

sider, for example, a rounded up version of the geometric Fibonacci sequence,

which we denote {gu
n}:

gu
n+2 = d2√gu

n+1g
u
ne with gu

1 = gu
2 = 1.

By bounding this sequence above and below, we can show that it has the

same growth rate as that of the regular geometric Fibonacci sequence {gn}.

Similarly, a rounded down version of {gn} or a rounded up or rounded down
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version of the harmonic Fibonacci sequence {hn} can be shown to have the

same growth rates as the corresponding non-rounded versions. The calcula-

tion for the growth rate of {gu
n} is performed here. Note, in addition, that

it is initially unclear whether rounded down versions of these sequences are

even increasing. For example, consider the sequence given by the recurrence

dn+2 = 2.5dn+1 − dn, with d1 = 20, d2 = 10. While this sequence approaches

zero, in fact, the corresponding rounded down version is decreasing for all

n ≥ 1 (20, 10, 5, 2, 0, -2, -5, -11, . . . ) and negative for n > 5. The absolute

value of the terms of this sequence grows exponentially. When we consider

the rounded-up version, we see that for n ≥ 6, the nth term is (20/256)2n.

(The first few terms of this sequence are 20, 10, 5, 3, 3, 5, 10, 20, 40, 80, . . . .)

From this example, we see that rounded up and rounded down sequences may

differ vastly from the original sequence. The above example is adopted from

one mentioned by past NCTM President Johnny Lott in a recent plenary

address to the Tennessee Math Teachers Association in Memphis. See [3] for

a comprehensive theory of rounding.

Now, we verify that the growth rate of the rounded up version of the

geometric Fibonacci sequence {gu
n} given by gu

n+2 = d2√gu
n+1g

u
ne is the same

as that of the usual geometric Fibonacci sequence {gn}. We bound the
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sequence above and below by sequences whose growth rate is the same as

that of {gn}. We define sequences:

un+2 = 2
√

un+1un + 1, with u1 = u2 = 1,

dn+2 =





fn for n ≤ 9

2
√

dn+1dn − 1 for n > 9,

where {fn} denotes the usual Fibonacci sequence. It is interesting to note

that the first nine terms of {gu
n} coincide precisely with those of {fn}, the

usual Fibonacci sequence. However, this simply illustrates that for pairs of

small numbers, the corresponding arithmetic and geometric means are close.

It is clear that the following inequalities hold:

dn ≤ gu
n ≤ un.

So it suffices to show that the growth rates of {un} and {dn} are 4
1
3 , which

is the growth rate of the regular geometric Fibonacci sequence {gn}. Note

that {un} is clearly an increasing sequence for n ≥ 2. Thus we have:

un+2 = 2
√

un+1un + 1

⇒ U := limn→∞
un+2

un+1
= 2 limn→∞

√
un√

un+1
+ limn→∞ 1

un+1

⇒ U = 4
1
3 .
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The reason the definition of {dn} gives the first few terms is to ensure that

the sequence is non-decreasing. Thus, the same argument implies that {dn}

has the same rate of growth.

Similarly, the rounded down version of {gn} or the rounded up or rounded

down version of the harmonic Fibonacci sequence {hn} can be shown to have

the same growth rate as that of the corresponding non-rounded version; again

we have to be careful to make sure the sequences corresponding to {dn} are

actually non-decreasing, meaning that we may have to provide the first few

terms, but that thereafter the recurrence, and thus the desired rate of growth,

hold.
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