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Abstract

Given a configuration of pebbles on the vertices of a graph, a
pebbling move is defined by removing two pebbles from some vertex
and placing one pebble on an adjacent vertex. The cover pebbling
number of a graph, γ(G), is the smallest number of pebbles such that
through a sequence of pebbling moves, a pebble can eventually be
placed on every vertex simultaneously, no matter how the pebbles
are initially distributed. The cover pebbling number for complete
multipartite graphs and wheel graphs is determined. We also prove
a sharp bound for γ(G) given the diameter and number of vertices
of G. 1
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1 Introduction

One recent development in graph theory, suggested by Lagarias and Saks,
called pebbling, has been the subject of much research and substantive
generalizations. It was first introduced into the literature by Chung [1],
and has been developed by many others including Hurlbert, who published
a survey of pebbling results in [3]. Given a connected graph G, distribute k
pebbles on its vertices in some configuration, C. Specifically, a configuration

1The results of this paper have recently been superseded by a theorem proven in [5]
and [6], which gives a general formula for the cover pebbling number of graphs.



on a graphG is a function from V (G) to N∪{0} representing an arrangement
of pebbles on G. We call the total number of pebbles k the size of the
configuration. A pebbling move is defined as the simultaneous removal of
two pebbles from some vertex and addition of one pebble on an adjacent
vertex. A pebble can be moved to a root vertex v if it is possible to place
one pebble on v in a sequence of pebbling moves. We define the pebbling
number, π(G) to be the minimum number of pebbles needed so that for
any initial distribution of pebbles, it is possible to move to any root vertex
v in G.

The concept of cover-solvability was introduced in [2]. We call a con-
figuration on a graph cover-solvable if, starting with this configuration, it
is possible, through a sequence of pebbling moves, to simultaneously place
one pebble on every vertex of the graph. The cover pebbling number of a
graph, γ(G), is defined as the smallest number such that every configura-
tion of this size is cover-solvable. One application in [2] for γ(G) is based on
a military application in which troops must be distributed simultaneously.

In [2], the cover pebbling number for complete graphs, paths and trees
is determined. Also, Hurlbert and Munyan [4] have constructed a proof
that determines the cover pebbling number of the d-cube.

This paper will consider various questions related to cover pebbling,
including open problem 9 in [2]. Section 2 describes the computation for
calculating the cover pebbling number for complete multipartite graphs. In
Section 3, we will compute the cover pebbling number of Wn, the wheel
graph. We conclude the paper in Section 4 by constructing a tight upper
bound for the cover pebbling number of graphs with specified diameter d
and number of vertices n.

2 Complete Multipartite Graphs

Definition 2.1. For s1 ≥ s2 ≥ · · · ≥ sr, let Ks1,s2,...,sr be the complete
r-partite graph with s1, s2, . . . , sr vertices in vertex classes c1, c2, . . . , cr re-
spectively.

Definition 2.2. For a complete r-partite graph G = Ks1,s2,...,sr , let ϕ(G) =
4s1 + 2s2 + · · ·+ 2sr − 3.

Theorem 2.3. γ(Ks1,s2,...,sr ) = ϕ(G).

Proof. First, we show that not every configuration of size ϕ(Ks1,s2,··· ,sr )−1
onKs1,s2,··· ,sr is cover-solvable. For instance, suppose all ϕ(Ks1,s2,··· ,sr )− 1
pebbles are on one vertex of c1, call it x. There are k = s2 + s3 + · · ·+ sr
vertices that are distance 1 from x and l = s1− 1 vertices that are distance
2 from x. For the k vertices a distance 1 from x, 2k pebbles are required to



cover these vertices, and for the l vertices at distance 2 from x, there are 4l
pebbles required to cover these vertices. We need one more pebble to remain
on x, for a total of 2k + 4l + 1 = ϕ(Ks1,s2,··· ,sr ) pebbles required, which is
one more than we have. Thus, this configuration is not cover-solvable.

Now suppose that there exists some complete r-partite graphKs1,s2,...,sr

which has a configuration of size ϕ(Ks1,s2,...,sr ) that is not cover-solvable.
Among such graphs, choose one of minimal order (let it beG′ = Ks′1,s

′
2,...,s

′
r′
).

First, we will show that G′ cannot be a star graph (that is, a Ks′1,1
).

To see this, consider:

Definition 2.4 (Crull et al [2]). Let T be a tree and let V (T ) be the vertex
set of T . For v ∈ V (T ), define

s(v) =
∑

u∈V (T )

2d(u,v),

with d(u, v) denoting the distance from u to v, and let

s(T ) = max
v∈V (T )

s(v).

In [2] it is shown that for any tree T , γ(T ) = s(T ). Since G′ is a tree,
we can compute γ(G′) by evaluating s(v) for all v ∈ G to obtain s(G). If
v ∈ c1 then s(v) = 4s′1 − 1, and if v ∈ c2 then s(v) = 2s′1 + 1. Thus,
s(G′) = γ(G′) = 4s′1 − 1 = 4s′1 + 2s′2 − 3 = ϕ(G′). Hence, for a star, every
configuration of size ϕ(G′) is cover-solvable. Since G′ is not a star, further
suppose that for any G′, each complete multipartite subgraph G of G′ is
cover-solvable with ϕ(G) pebbles.

Notice that for any complete p-partite graph with p ≥ 2 other than a
star graph, the removal of a vertex from the graph leaves a subgraph that
is a complete q-partite graph with q ≥ 2. Since G′ cannot be a star, for
any vertex v ∈ G′, G′ − v is a complete r∗-partite graph with r∗ ≥ 2.
Furthermore, since by our assumption of the minimality of G′, for any
complete r-partite graph G smaller than G′, a configuration of size ϕ(G)
or greater must be cover-solvable, and since clearly ϕ(G′ − v) ≤ ϕ(G′)− 2,
any configuration of size ϕ(G′)− 2 or greater on G′ − v is cover-solvable.

Let C be a configuration of size ϕ(G′) on G′. Suppose C(v) = 1 or 2
for some v ∈ G′. Then C restricted to G′ − v is a configuration of size at
least ϕ(G′)− 2 and thus is cover-solvable on G′ − v. After we carry out the
steps of the cover-solution of this subgraph, we will have cover-solved G′,
contradicting our hypothesis.

Otherwise, if C(v) = 0 or C(v) ≥ 3 for all v ∈ G′, choose some v′ for
which C(v′) = 0 (if no such v′ exists, we are done). Then consider the
vertices of G′ which are in different vertex classes of G′ from v′. If at least



one of these is initially occupied, call it v′′. Then since C(v′′) ≥ 3, we can
cover v′ with pebbles from v′′, while leaving ϕ(G′)− 2 pebbles on G′ − v′.
Thus, the configuration of pebbles on G′ after this move, restricted to the
subgraph G′ − v′ is cover-solvable, and after we carry out the steps of the
cover-solution of this subgraph, we will have cover-solved G′. Otherwise,
all the vertices in the vertex classes of G′ that are different than the vertex
class from v′ are empty. Thus, all pebbles are on vertices in the vertex
class of v′, and in particular, some vertex w of this class has pebbles on
it, so C(w) ≥ 2. Thus, we can use pebbles on w to cover some vertex w′

in another vertex class, as all these vertices are empty. Note that after
this move, the configuration of pebbles on G′ − w′ has size ϕ(G′)− 2, and
thus this configuration restricted to the subgraph G′ −w′ is cover-solvable.
Again, after we carry out the steps of the cover-solution of this subgraph,
we will have cover-solved G′.

3 The Wheel Graph

In this section, we will compute γ(Wn), with Wn denoting the wheel graph.
The wheel graph is composed of a cycle consisting of n vertices, v1, . . . , vn,
which are all connected to a hub vertex, v0, for a total of v = n+1 vertices.

Theorem 3.1. For n ≥ 3, γ(Wn) = 4n− 5 = 4v − 9.

Proof. Consider the configuration of pebbles in which all the pebbles are
on one vertex of Wn, say x, that is not the hub. In this case, 2 pebbles are
required to cover each of the three vertices adjacent to x, and 4 pebbles are
required to cover each of the n − 3 vertices that are a distance of 2 away
from x. The total number of pebbles required to cover-solve these vertices
is 4n − 6. However, we require one more pebble to place on x. Hence,
γ(Wn) ≥ 4n− 5.

To complete the proof, we will show that if there is some configuration
of pebbles on Wn with at least 4n − 5 pebbles, then the configuration is
cover-solvable. Suppose C is a configuration of pebbles on Wn and consists
of at least 4n− 5 pebbles. We now will describe a sequence of moves that
will cover-solve any such configuration. First, if there is an outer vertex on
Wn that is empty but adjacent to another outer vertex w with three or more
pebbles, then make a move from w to cover this vertex. Repeat this process
until no empty outer vertex is adjacent to an outer vertex with three or
more pebbles. Let k be the number of outer vertices that are covered after
this has been done.

Case 1: Suppose that k = 0. In this case, all the pebbles are on
the hub vertex. To cover-solve the remaining v − 1 vertices, we can cover
⌊ 4v−10

2 ⌋ = 2v − 5 vertices using the excess pebbles already on the hub



vertex. Since v ≥ 4 and 2v − 5 ≥ v − 1, we can cover-solve all of the outer
vertices in this manner.

Case 2: Suppose that k = 1 or k = 2. Each outer vertex covered in
the process above requires at most two pebbles to cover it. Since v ≥ 4,
there are at least 4v − 9 − 2k pebbles already on the hub vertex. After
subtracting 1 pebble for the hub itself, there are 4v − 10− 2k pebbles that
can be used such that pebbles can be placed on the remaining v − k − 1
uncovered vertices. With these remaining pebbles on the hub, we can cover
at least ⌊ 4v−10−2k

2 ⌋ = 2v − 5− k vertices. Since 2v − 5− k ≥ v − k − 1 for
v ≥ 4, there are enough pebbles to cover-solve Wn in this situation.

Case 3: Suppose that k ≥ 3. Again, each outer vertex in the process
above requires at most two pebbles to cover it. If there are any pairs of
pebbles remaining on outer vertices such that removing the pairs would
not uncover that vertex, those pairs of pebbles should be moved to the hub
vertex. After this process, there are at least ⌈ 4v−9−2k

2 ⌉ = 2v−4−k pebbles
on the hub vertex. Notice that this bound is based on the worst case that
occurs when no pebbles are initially on the hub vertex. From the hub vertex,
it takes exactly 2 pebbles to cover each of the remaining outer vertices and
one pebble to cover the hub vertex. So at most ⌊ 2v−5−k

2 ⌋ = v−3−⌊k
2 ⌋ outer

vertices can be covered. Since there are at most v − k − 1 outer vertices
left to be covered, and for k ≥ 3, v− k− 1 ≥ v− 3−⌊k

2 ⌋, there are enough
pebbles to cover-solve Wn in this case, and the proof is complete.

4 The Cover Pebbling Number of Graphs of
Diameter d

Definition 4.1. A binary weighting on a graph G is a function from V (G)
to {0, 1}. If B is a binary weighting on G, then let the order |B| of B be∑

v∈G B(v).

Definition 4.2. For a graph G and binary weighting B, a configuration
C on G will be called permissible (with respect to B) if for all v ∈ G,
B(v) = 0 =⇒ C(v) = 0. A permissible configuration on a graph G with
a binary weighting B will be called cover-solvable (with respect to B) if we
can reach a configuration on which B(v) = 1 =⇒ C(v) ≥ 1 for all v ∈ G
by a sequence of pebbling moves.

Lemma 4.3. Let G be a graph of diameter d, B a binary weighting on
G, and C a configuration of size at least (|B| − 1)2d + 1 on G which is
permissible with respect to B. Then C is cover-solvable with respect to B.

Proof. Assume the opposite. Then for all pairs {G,B} of a graph G to-
gether with a binary weighting on G such that there exists a non-cover-
solvable configuration of size at least (|B| − 1)2d + 1 (with d denoting the



diameter of G,) choose one for which |B| is minimal, and call it {G′, B′}.
Let d′ be the diameter of G′, let k = (|B′| − 1)2d

′
+ 1, and choose some

configuration (call it C ′) on G′ which is permissible with respect to B′, has
size at least k and is not cover-solvable.

Certainly we cannot have |B′| = 1, for then the only permissible con-
figuration of size |C ′| ≥ k = 1 is the function which takes the value |C ′| on
the lone vertex for which B′ = 1, and is zero elsewhere. This configuration
covers all vertices with non-zero weights, and so is trivially cover-solvable,
creating a contradiction.

Now, suppose that |B′| ≥ 2. If it is true that C ′(v) > 0 whenever
B′(v) = 1 we have a contradiction, for C ′ is then trivially cover-solvable.
Otherwise, let v′ be some vertex of G′ for which C ′(v′) = 0 and B′(v′) = 1.
At most |B′| − 1 vertices of G′ are initially occupied, and there are at least
(|B′| − 1)2d

′
+ 1 total pebbles, so by the pigeonhole principle, there are at

least 2d
′
+ 1 pebbles on some vertex (call it v′′). Since the diameter of G′

is d′, d(v′, v′′) ≤ d′. Thus we can move 2d
′
of the pebbles from v′′ onto v′,

through a series of pebbling moves, losing half of these pebbles for each
edge we must move across, but leaving at least one pebble on v′ if we move
all pebbles via one of the shortest paths.

Now, define a binary weighting B∗ on G by

B∗(v) =
{

0 : v = v′

B′(v) : v ̸= v′

and define a configuration C∗ on G by

C∗(v) =

{
0 : v = v′

C ′(v′′)− 2d
′

: v = v′′

C ′(v) : otherwise

This is the configuration after we have moved pebbles from v′′ onto v′,
except that we ignore the pebbles on v′ and designate it as a vertex which
need not be covered by pebbles. Clearly |B∗| = |B′|−1 and |C∗| = |C ′|−2d

′

so from |C ′| ≥ ((|B′| − 1)2d
′
+ 1), we see |C∗| ≥ ((|B∗| − 1)2d

′
+ 1). C∗ is

permissible with respect to B∗, and so by our assumption of the minimality
of B′, C∗ is cover-solvable with respect to B∗.

If we carry out the moves of the cover-solution of C∗ on G starting with
the configuration left on G′ after our initial movement of pebbles from v′′

to v′, (certainly this is possible because this configuration is no smaller
than C∗ on any vertex,) we will have covered every vertex of G′ for which
B∗ = 1. Also, we must still have v′ ≥ 1, because C∗(v′) = 0, which does
not permit any sequence of moves that decreases the number of pebbles
on v′. Thus every vertex for which B′ = 1 now has C ′ ≥ 1, and we have
cover-solved C ′ with respect to B′, which contradicts the assumption that
C ′ was not cover-solvable.



Theorem 4.4. Let G be a graph of order n and diameter d, and let C be a
configuration on G of size at least 2d(n−d+1)−1. Then G is cover-solvable
(with respect to the weighting on G which is equal to 1 for each vertex.)

Proof. First, we show that this bound is sharp by exhibiting the following
class of graphs G having n vertices, diameter d and γ(G) = 2d(n−d+1)−1.
Let Gn,d be a fuse graph, which is a path on d − 1 vertices connected to
an outer vertex of a star graph containing n − d + 1 outer vertices. By
this construction, Gn,d is of order n and has diameter d. In [2], the cover-
pebbling number of all trees is found. Thus, we know for these particular
trees that γ(G) = 2d(n− d+ 1)− 1. Figure 1 shows an example for n = 7
and d = 4.
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Figure 1: The graph G7,4.

We now prove the theorem by defining an algorithm by induction which
will take us to a configuration, the solvability of which we can prove using
the lemma. Let R0 = {v ∈ G : C(v) > 0}, let S0 = {v ∈ G : C(v) = 0},
and let T0 = ∅. Let C0 = C.

For illustrative purposes, we now describe the first step of the algorithm.
If S0 = ∅, we are clearly done, for C already covers G. Otherwise, note
that since R0 and S0 are complementary, there exist vertices r0 ∈ R0 and
s0 ∈ S0 such that d(r0, s0) = 1. If C0(r0) = 1 or C0(r0) = 2, then let
R1 = R0 \ {r0}, S1 = S0 and T1 = T0 ∪ {r0} = {r0}. In this case, let
C1 = C0.

If on the other hand C0(r0) ≥ 3 then we move 2 pebbles from r0 to
s0, and instead put s0 in T1 and define C1 according to the following
configuration. Explicitly, in this case let R1 = R0, S1 = S0 \ {s0}, and
T1 = T0 ∪ {s0} = {s0}. Define C1 on G by

C1(v) =

{
r0 − 2 : v = r0

1 : v = s0
C0(v) : otherwise

Define the sequencesR0, R1, . . . , Rd−1, S0, S1, . . . , Sd−1, T0, T1, . . . , Td−1,
and C0, C1, . . . , Cd−1, recursively in an analogous manner. Suppose for



some m < d − 1 we have Rm, Sm, Tm, and Cm, such that the following
hold:

1. |Tm| = m.

2. Rm, Sm and Tm are disjoint and Rm ∪ Sm ∪ Tm = V (G).

3. For all v ∈ Rm ∪ Tn, Cm(v) > 0 and for all v ∈ Sm, Cm(v) = 0.

4. Cm is a configuration which can be reached from C by a sequence of
pebbling moves.

5. Rm and Sm are both non-empty.

6.
∑

v∈Rm
Cm(v) ≥ [2d(n− d+ 1)− 1]− [2m+1 − 2].

Note that all these conditions are trivially true for m = 0.
From condition 1, we know that the minimum distance between Rm and

Sm is at most m+1. Take points rm ∈ Rm and sm ∈ Sm for which this min-
imum distance is achieved (and thus d(rm, sm) ≤ m+1.) If Cm(rm) ≤ 2m+1

then let Rm+1 = Rm \ {rm}, Sm+1 = Sm and Tm+1 = Tm ∪ {rm}. In this
case, let Cm+1 = Cm.

Otherwise, if Cm(rm) > 2m+1 then we can move 2m+1 pebbles along a
minimal path from rm to sm, which is of length at most m+1. We lose half
of these pebbles for each edge we must move across, but we will be able
to move 2(m+1)−d(rm,sm) ≥ 1 onto sm. Put sm in Tm+1 and define Cm+1

according to the configuration after these moves. Explicitly, in this case let
Rm+1 = Rm, Sm+1 = Sm \ {sm} and Tm+1 = Tm ∪ {sm}. Define Cm+1 on
G by

Cm+1(v) =

{
rm − 2m+1 : v = rm

2(m+1)−d(rm,sm) : v = sm
Cm(v) : otherwise

For m+ 1, it is clear from our definitions that conditions 1, 2, 3, and 4
still hold. Condition 6 also holds, for in either of the two above cases, the
total number of pebbles left on Rm+1 is at most 2m+1 less than were on
Rm. Thus,∑

v∈Rm+1

Cm+1(v) ≥
∑

v∈Rm

Cm(v)− 2m+1

≥ [2d(n− d+ 1)− 1]− [2m+1 − 2]− 2m+1

= [2d(n− d+ 1)− 1]− [2m+2 − 2].

Next we check condition 5. Since m + 1 < d and n ≥ d, we know that
[2d(n− d+1)− 1]− [2m+1 − 2] > 0. Thus, the fact that condition 6 is true
for m + 1 necessitates that Rm ̸= ∅. Also, if Sm+1 = ∅ then Cm+1(v) > 0



for all v ∈ Rm ∪ Sm ∪ Tm = V (G), and since Cm is attainable from C by a
sequence of pebbling moves, we have cover-solved C and we are done. So
we may assume Sm+1 ̸= ∅ and condition 5 holds.

By this recursive definition, we now have Rd−1, Sd−1, Td−1, and Cd−1

for which conditions 1-6 hold. Now define a binary weighting B on G by

B(v) =
{

1 : v ∈ Rd−1 ∪ Sd−1
0 : v ∈ Td−1

Also, define C ′
d−1 on G by

C ′
d−1(v) =

{
Cd−1(v) : v ∈ Rd−1 ∪ Sd−1

0 : v ∈ Td−1

Clearly C ′
d−1 is permissible with respect to B. From condition 1, we know

|Td−1| = d − 1 so |B| = n − d + 1, and from condition 6 we have that
|C ′

d−1| ≥ [2d(n− d+ 1)− 1]− [2(d−1)+1 − 2] = 2d(n− d) + 1. Thus, by the
lemma, C ′

d−1 is cover-solvable with respect to B.

By condition 4, Cd−1 is a configuration which can be reached from C by
a sequence of pebbling moves. If after we carry out this sequence of moves,
we carry out the moves of this cover-solution of C ′

d−1 on G (certainly this
is possible because C ′

d−1 is no greater than Cd−1 on any vertex,) we will
have covered every vertex of G for which B = 1, that is every vertex in
Rd−1∪Sd−1. Also, every vertex v ∈ Td−1 must remain covered, because for
each of these vertices, C ′

d−1(v) = 0, which does not permit any sequence
of moves which decreases the number of pebbles on v. Applying, condition
2, we see for every vertex v ∈ V (G) = Rd−1 ∪ Sd−1 ∪ Td−1, our final
configuration after this sequence of moves is greater than zero, and so we
have cover-solved C.
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