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Abstract

We exhibit an explicit list of nine graphs such that a graph drawn in the Klein bottle is
5-colorable if and only if it has no subgraph isomorphic to a member of the list. This answers
a question of Thomassen [J. Comb. Theory Ser. B 70 (1997), 67–100] and implies an earlier
result of Král’, Mohar, Nakamoto, Pangrác and Suzuki that an Eulerian triangulation of the
Klein bottle is 5-colorable if and only if it has no complete subgraph on six vertices.

1 Introduction

All graphs here are finite, undirected and simple. We study a specific instance of the following
more general question: Given a surface Σ and an integer t ≥ 0, which graphs drawn in Σ are t-
colorable? Heawood proved that if Σ is not the sphere, then every graph in Σ is t-colorable as long
as t ≥ H(Σ) := b(7 +

√
24γ + 1)/2c, where γ is the Euler genus of Σ, defined as twice the genus if

Σ is orientable and the cross-cap number otherwise. Ringel and Youngs proved that the bound is
best possible for all surfaces except the Klein bottle. Dirac [6] and Albertson and Hutchinson [1]
improved Heawood’s result by showing that every graph in Σ is actually (H(Σ) − 1)-colorable,
unless it has a subgraph isomorphic to the complete graph on H(Σ) vertices.

We say that a graph is (t + 1)-critical if it is not t-colorable, but every proper subgraph is.
Dirac [7] proved that for every t ≥ 8 and every surface Σ there are only finitely many t-critical
graphs on Σ. Using a result of Gallai [10] this can be extended to t = 7. In fact, the result extends
to t = 6 by a deep theorem of Thomassen [20]. Thus for every t ≥ 5 and every surface Σ there
exists a polynomial-time algorithm to test whether a graph in Σ is t-colorable.

What about t = 3 and t = 4? The 3-coloring decision problem is NP-hard even when Σ
is the sphere [11], and therefore we do not expect to be able to say much. By the Four-Color
Theorem [2, 3, 4, 17] the 4-coloring decision problem is trivial when Σ is the sphere, but it is
open for all other surfaces. A result of Fisk [9] can be used to construct infinitely many 5-critical
graphs on any surface other than the sphere, and the structure of such graphs appears to be
complicated [16, Section 8.4].

Thus the most interesting value of t for the t-colorability problem on a fixed surface seems to be
t = 5. Albertson and Hutchinson [1] proved that a graph in the projective plane is 5-colorable if and
only if it has no subgraph isomorphic to K6, the complete graph on six vertices. Thomassen [19]
proved the analogous (and much harder) result for the torus, which we now state. If K,L are
graphs, then by K +L we denote the graph obtained from the union of a copy of K with a disjoint
copy of L by adding all edges between K and L. The graph T11 is obtained from a cycle of length
11 by adding edges joining all pairs of vertices at distance two or three. The graph H7 is the Hajós’
sum of two copies of K4 and can be described as follows. Take two disjoint copies of K4, and for

i = 1, 2 let xi, yi be distinct vertices in the ith copy. To obtain H7 delete the edges xiyi, identify
x1 and x2 and add the edge y1y2. Now we can state Thomassen’s theorem [19].
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Theorem 1. A graph in the torus is 5-colorable if and only if it has no subgraph isomorphic to

K6, C3 + C5, K2 + H7, or T11.

Our main theorem is the analogous result for the Klein bottle. The graphs L1, L2, . . . , L6 are
defined in Figure 1.

Theorem 2. A graph in the Klein bottle is 5-colorable if and only if it has no subgraph isomorphic

to K6, C3 + C5, K2 + H7, or any of the graphs L1, L2, . . . , L6.

(a) L1 (b) L2 (c) L3

(d) L4 (e) L5 (f) L6

Figure 1: The graphs L1 through L6.

Thus in order to test 5-colorability of a graph G drawn in the Klein bottle it suffices to test
subgraph isomorphism to one of the graphs listed in Theorem 2. Using the algorithms of [8] and [15]
we obtain the following corollary.

Corollary 3. There exists an explicit linear-time algorithm to decide whether an input graph em-

beddable in the Klein bottle is 5-colorable.

It is not hard to see that with the sole exception of K6, none of the graphs listed in Theorem 2
can be a subgraph of an Eulerian triangulation of the Klein bottle. Thus we deduce the following
theorem of Král’, Mohar, Nakamoto, Pangrác and Suzuki [13].

Corollary 4. An Eulerian triangulation of the Klein bottle is 5-colorable if and only if it has no

subgraph isomorphic to K6.

2 A lemma

We need a lemma about extensions of 5-colorings of facial cycles in a planar graph, an extension
of [19, Lemma 4.1]. Let G be a planar graph, and let C be a cycle bounding a face of G. We say
that G is C-minimal if there exists a proper 5-coloring f : V (C) → {1, 2, . . . , 5} such that f does
not extend to a 5-coloring of G, but extends to a 5-coloring of G\e for every edge e ∈ E(G)−E(C).
The following is shown in [12].
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Lemma 5. For every cycle C there are only finitely many C-minimal graphs.

Thomassen [19, Lemma 4.1] found all C-minimal graphs for cycles of length at most six, and
all those for cycles of length at most seven were found in [5]. The authors of [12] give an explicit
algorithm to generate all C-minimal graphs for every fixed cycle C.

Here is why we need C-minimal graphs. Let G be a 6-critical graph drawn in the Klein bottle,
let C be a cycle in G bounding a closed disk ∆ in the Klein bottle, and let H be the subgraph
of G consisting of all vertices and edges of G drawn in ∆. Then H is C-minimal. In the proof of
Theorem 2 we will construct an explicit subgraph J of G such that every face of J is homeomorphic
to an open disk (a “2-cell embedding”). The above observation will allow us to deduce what G
looks like, by filling in each face f of J by a C-minimal graph, where C is the face boundary of f
(making the obvious adjustment if C fails to be a cycle).

3 First proof

We have obtained Theorem 2 as two independent research groups [5, 12] using different, but related
arguments. In particular, the proof [12] is computer-assisted, whereas the other one is not. The
following observations are common to both proofs. Sasasuma [18] proved that every 6-regular graph
in the Klein bottle is 5-colorable. Let G0 be a 6-critical graph in the Klein bottle; then G0 has
a vertex v0 of degree exactly five. We may assume that G0 is not K6, and hence it has no K6

subgraph. It follows that v0 has a pair of non-adjacent neighbors, say x and y. Let Gxy be the
graph obtained from G0 by deleting all edges incident with v0 except xv0 and yv0, contracting the
edges xv0 and yv0, and deleting all resulting parallel edges. This also defines a drawing of Gxy in
the Klein bottle. If Gxy is 5-colorable, then so is G0, as is easily seen. Thus Gxy has a 6-critical
subgraph, say J . Let w be a vertex of J , and let W = (W1,W2) be a partition of the neighbors of w
into two non-empty disjoint sets. Let Jw

W be obtained from J by splitting w into two non-adjacent
vertices w1 and w2 such that wi has neighbors Wi, and then adding a new vertex joined to w1 and
w2 only. It follows that Jw

W is isomorphic to a subgraph of G0 for some choice of w ∈ V (J) and
some partition W of the neighbors of w. If every face of J w

W is an open disk, then, as explained
in the previous section, G can be regarded as being obtained from J w

W by inserting a C-minimal
graph into each face bounded by C.

The authors of [12] generate, for each 6-critical Klein bottle graph J and for each 2-cell em-
bedding of J in the Klein bottle, all graphs Jw

W , and then fill their faces in all possible ways with
C-minimal graphs. They discard graphs that are not 6-critical, and repeat the process. Thus they
need C-minimal graphs for all cycles of length at most 10. Finally, they show, using a computer-free
argument, that embeddings of J that are not 2-cell do not produce any additional 6-critical graphs.
Their computer code is available for inspection [14].

4 Second proof

The proof of [5] uses the same basic idea, but instead of filling all faces of J w
W by C-minimal

graphs it takes advantage of different possible choices of the vertices x, y, whenever such choice is
possible. More precisely, let G0 be a graph drawn in the Klein bottle that is not 5-colorable and
let a vertex v0 ∈ V (G0) of degree exactly five be chosen so that |V (G0)| is minimum, and subject
to that, several other parameters are optimized. An unordered pair of vertices {x, y} is called an
identifiable pair if x and y are not adjacent and x, y ∈ N(v0). Let (G0, v0) be as stated, let {x, y}
be an identifiable pair, and let Gxy be as in the previous section. By the minimality of G0 the
graph Gxy has a subgraph J isomorphic to one of the graphs from Theorem 2, and hence J w

W is
isomorphic to a subgraph of G0 for some choice of w ∈ V (J) and some partition W of the neighbors
of w. If J = C3 + C5 or J = K2 + H7, then we conclude the proof using a minor modification of
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the corresponding argument in [19]. If J is one of the graphs Li, then we need to examine possible
drawings of those graphs in the Klein bottle. Luckily, in all cases the graph J w

W has all faces of
size at most seven, and so we can use our explicit version of Lemma 5 for cycles of length at most
seven. Finally, the hardest case is when J is K6, but even then we get by with the same version of
Lemma 5, making use of all possible identifiable pairs. We refer to [5] for more details.
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